Project description:To investigate the CMS subtype of the CC-531 cells, CC-531 organoids and CC-531 ex vivo tumor tissue grown in the peritoneum of WAG/Rij rats We then performed gene expression profiling analysis using data obtained from RNA-seq of CC-531 cells, CC-531 organoids and CC-531 ex vivo tumor tissue grown in the peritoneum of WAG/Rij rats of three different passages per sample type.
Project description:Antimicrobial peptides (AMPs) are compounds with a variety of bioactive properties. Especially promising are their antibacterial activities, often towards drug-resistant pathogens. Across different AMP sources, AMPs expressed within plants are relatively underexplored, with a limited number of plant AMP families identified. Recently, we identified the novel AMPs CC-AMP1 and CC-AMP2 in ghost pepper plants (Capsicum chinense x frutescens), exerting promising antibacterial activity and not classifying into any known plant AMP family. Herein, AMPs related to CC-AMP1 and CC-AMP2 were identified within both Capsicum annuum and Capsicum baccatum. Targeted MS/MS experiments were performed to determine peptide sequences, guided by in silico AMP sequence predictions.
Project description:Gene expression profiles of OSU-CLL cells were tested after exposure to CC-122 (0.1 and 1 micromolar), Lenalidomide (1 micromolar), or DMSO, at 5 and 24 hours
Project description:We established a novel in vitro tissue culture system (named VISUAL-CC), in which phloem companion cell (CC) differentiation can be induced with Arabidopsis thaliana cotyledons. To compare gene expression profiles between VISUAL and VISUAL-CC, we conducted GeneChip analysis using two different in vitro cultures. CC-S means a sample that strongly induces CC differentiation. CC-M means a sample that moderately induces CC differentiation. V means a VISUAL sample, that does not induce CC differentiation at all.
Project description:CC-671 has been identified as an inhibitor of Cdc2-like kinase 2 (CLK2) and TTK in direct enzyme assays. CLK2 is a member of the CLK family that phosphorylates serine- and arginine-rich (SR) proteins of the spliceosomal complex as part of a regulatory mechanism for control of pre-mRNA splicing. SR proteins are a family of small nuclear ribonucleoprotein particle (snRNP) splicing factors involved in constitutive and alternative splicing. Monitoring specific phospho-biomarkers of CLK2 demonstrated that CC-671 inhibited phosphorylation of CLK2 substrates in cancer cells with mean IC50 of 549 nM in the triple negative breast cancer (TNBC) line CAL51. In this study, RNA sequencing approach was used to quantify the impact of CC-671 treatment on gene transcription and global alternative splicing in CAL51 cells. Differential exon usage analysis demonstrated that CC-671 changed alternative splicing of many genes. In addition, different sets of genes are impacted by CC-671 at both the alternative splicing and mRNA expression. Genes impacted by alternative splicing shared a set of common pathways with genes altered by mRNA expression. This result indicates that CC-671 regulates transcription via both gene expression and alternative splicing mechanisms.
Project description:Hepatocellular carcinoma (HCC) is a leading cause of cancer mortality, necessitating innovative therapeutic approaches. This study demonstrates that the compound CC-885 exerts potent anti-tumor effects in HCC both in vitro and in vivo. CC-885 significantly inhibited proliferation, migration, and invasion of HCC cells. In vivo, CC-885 markedly reduced tumor growth and angiogenesis in chick embryo and mouse xenograft models. Mechanistically, CC-885 selectively reduced GOLM1 protein levels via ubiquitin-mediated proteasomal degradation, without affecting its mRNA levels. GOLM1 knockdown mimicked the anti-proliferative effects of CC-885, while overexpression of GOLM1 conferred resistance to CC-885-induced apoptosis and growth inhibition. CC-885 facilitated the interaction between GOLM1 and the E3 ubiquitin ligase CRBN, promoting GOLM1 ubiquitination and degradation. Transcriptomic analyses revealed that CC-885 and GOLM1 knockdown modulated key pathways involved in apoptosis, NF-κB signaling, and cell proliferation. These findings highlight CC-885 as a promising therapeutic agent for HCC, primarily by facilitating the CRBN-dependent degradation of GOLM1, underscoring its potential for clinical application.