Project description:Purpose: Cucumber (Cucumis sativus L.) is an economically important vegetable crop worldwide, and cucumber fruit spine density has an important impact on the commercial value. However, little is known about the regulatory mechanism for the fruit spine formation.In this study, the transcriptome analyses of ovaries and pericarps from numerous-spine parent and few-spine parent were conducted to identify the gene regulatory networks involved in the formation and development of numerous fruit spines in cucumber. Methods: Cucumber mRNA profiles of ovaries and pericarps from numerous-spine parent and few-spine parent were generated by deep sequencing, in triplicate, using Illumina HiSeq 4000. Then, clean data (clean reads) were obtained by removing reads containing adapters, reads containing poly-N sequences and low-quality reads from the raw data. Simultaneously, the Q20, Q30 and GC contents of the clean data were calculated. All of the downstream analyses were based on the high-quality clean data. Clean paired-end reads were mapped to the reference genome using TopHat v2.0.12 (Trapnell et al. 2012). Then, the FPKM (fragments per kilobase of transcript sequence per million base pairs sequenced) value of each gene was calculated to estimate gene expression levels (Trapnell et al. 2010). Genes with an adjusted P-value < 0.05 identified by DESeq were assigned as differentially expressed genes(DEGs). Results: We generated 42.96-57.53 million raw reads from each library, and 39.85-54.02 million clean reads were obtained after the removal of low-quality reads and adapter sequences. Among the clean reads, 79.03-80.94% were mapped to the gene database . Based on the KEGG database, pathway enrichment analysis was performed to identify significantly enriched metabolic pathways or signal transduction pathways in DEGs. Plant hormone signal transduction was significantly enriched in up-regulated genes in both F_6DBF compared with M_6DBF and F_0DAA compared with M_0DAA. Conclusions: Based on the transcriptome analysis, we excavated possible biological regulatory networks involved in the formation and development of numerous fruit spines in cucumber. This work will promote the exploration of molecular mechanisms that regulate cucumber fruit spine density.
Project description:Background: MicroRNAs (miRNAs) represent a family of small endogenous, non-coding RNAs that play critical regulatory roles in plant growth, development, and environmental stress responses. Although Hami melon is an attractive model for valuable biological traits analysis, the role of miRNA action in the fruit development and ripening remains largely unknown. Here, we performed small RNA sequencing to investigate the Hami melon miRNA profiles at four fruit developmental stages Results: Small RNA sequencing yielded raw reads in eight libraries. miRNAs expression profiles were variable at different fruit developmental stages. The expression levels of five known miRNAs were validated by quantitative real-time PCR. Among the identified miRNAs, several miRNAs showed developmentally regulated and differentially expressed pattern during fruit development. Conclusions: Our results present a first comprehensive set of identification and characterization of Hami melon fruit miRNAs and their potential targets, which provide valuable basis for further research on the critical role of miRNAs in melon fruit development.
Project description:Purpose: The goal of this study is to compare endothelial small RNA transcriptome to identify the target of OASL under basal or stimulated conditions by utilizing miRNA-seq. Methods: Endothelial miRNA profilies of siCTL or siOASL transfected HUVECs were generated by illumina sequencing method, in duplicate. After sequencing, the raw sequence reads are filtered based on quality. The adapter sequences are also trimmed off the raw sequence reads. rRNA removed reads are sequentially aligned to reference genome (GRCh38) and miRNA prediction is performed by miRDeep2. Results: We identified known miRNA in species (miRDeep2) in the HUVECs transfected with siCTL or siOASL. The expression profile of mature miRNA is used to analyze differentially expressed miRNA(DE miRNA). Conclusions: Our study represents the first analysis of endothelial miRNA profiles affected by OASL knockdown with biologic replicates.
Project description:Two fruit development stages of the wild chiltepin pepper (Capsicum annuum var. glabriusculum) were studied. RNA-Seq data was obtained from fruits at 20 and 68 days after anthesis with two biological replicates for a total of 4 samples. 260 million raw reads were sequenced and over 80% of them mapped back to the Capsicum annuum genome.
Project description:A cDNA library was constructed by Novogene (CA, USA) using a Small RNA Sample Pre Kit, and Illumina sequencing was conducted according to company workflow, using 20 million reads. Raw data were filtered for quality as determined by reads with a quality score > 5, reads containing N < 10%, no 5' primer contaminants, and reads with a 3' primer and insert tag. The 3' primer sequence was trimmed and reads with a poly A/T/G/C were removed
Project description:Melon (Cucumis melo L.) is a commercially important fruit crop that is cultivated worldwide. The melon research community has recently benefited from the determination of a complete draft genome sequence and the development of associated genomic tools, which have allowed us to focus on small RNAs (sRNAs). These are short, non-coding RNAs 21â24 nucleotides in length with diverse physiological roles. In plants, they regulate gene expression and heterochromatin assembly, and control protection against virus infection. Much remains to be learned about the role of sRNAs in melon. We constructed 10 sRNA libraries from two stages of developing ovaries, fruits and photosynthetic cotyledons infected with viruses, and carried out high-throughput pyrosequencing. We catalogued and analyzed the melon sRNAs, resulting in the identification of 26 known miRNA families (many conserved with other species), the prediction of 84 melon-specific miRNA candidates, the identification of trans-acting siRNAs, and the identification of chloroplast, mitochondrion and transposon-derived sRNAs. In silico analysis revealed more than 400 potential targets for the conserved and novel miRNAs. This analysis provides insight into the composition and function of the melon small RNAome, and paves the way towards an understanding of sRNA-mediated processes that regulate melon fruit development and melonâvirus interactions. 11 small RNA libraries from several tissues of melon are included en the raw data. 2 samples from ovary, 2 samples from fruit, 1 sample from healthy cotyledons (Cultivar Tendral), 1 samples from healthy cotyledons (genotype TGR-1551), 1 sample from cotyledons (cultivar Tendral) infected with Watermelon mosaic virus (WMV), 1 sample from cotyledons (cultivar TGR-1551) infected with WMV, 1 sample from cotyledons (cultivar Tendral) infected with Melon necrotic spot virus (MNSV, Malfa5 isolate), 1 sample from cotyledons (cultivar Tendral) infected with MNSV (chimeric virus with Malfa5-264 isolates), 1 library from synthetic RNA oligos. Raw reads were obtained from two independent 454 runs, ~22,000 reads each one, to a total of 447,180 reads