Project description:Rice leaves consist of three distinct regions along a proximal-distal axis, namely, the leaf blade, sheath, and blade-sheath boundary region. Each region has a unique morphology and function, however,but the genetic programs underlying the development of each region are poorly understood. To capture the entire picture of rice leaf development and to discover genes with unique functions in rice and grasses, it is crucial to explore genome-wide transcriptional profiles during the development of the three regions. In this study, we performed microarray analysis to profile the spatial and temporal patterns of gene expression in the rice leaf using dissected parts of leaves sampled in broad developmental stages.
Project description:Enhancing grain production of rice (Oryza sativa L.) is a top priority in ensuring food security for human being. One approach to increase yield is to delay leaf senescence and to extend the available time for photosynthesis. microRNAs (miRNAs) are key regulators for aging and cellular senescence in eukayotes. However, miRNAs and their roles in rice leaf senescence remain unexplored. Here, we report identification of miRNAs and their putative target genes by deep sequencing of six small RNA libraries, six RNA-seq libraries and two degradome libraries from the leaves of two super hybrid rice, Nei-2-You 6 (N2Y6, age-resistant rice) and Liang-You-Pei 9 (LYP9, age-sensitive rice). Totally 372 known miRNAs and 162 miRNA candidates were identified, and 1145 targets were identified. Compared with the expression of miRNAs in the leaves of LYP9, the numbers of miRNAs up-regulated and down-regulated in the leaves of N2Y6 were 47 and 30 at early stage of grain-filling, 21 and 17 at the middle stage, and 11 and 37 at the late stage, respectively. Six miRNA families, osa-miR159, osa-miR160 osa-miR164, osa-miR167, osa-miR172 and osa-miR1848, targeting the genes encoding APETALA2 (AP2), zinc finger proteins, salicylic acid-induced protein 19 (SIP19), Auxin response factors (ARF) and NAC transcription factors, respectively, were found to be involved in leaf senescence through phytohormone signaling pathways. These results provided valuable information for understanding the miRNA-mediated leaf senescence of rice, and offered an important foundation for rice breeding.
Project description:Rice (IR64) was grown in a field plot at the International Rice Research Institute in the Phillipines. This data shows transcriptional changes happening throughout the day in leaf tissue and how warm nighttime temperature may influence those transcriptional changes.
Project description:To comprehend the gene expression profile in rice flag leaf under high temperature, Agilent 4×44k rice oligo microarray experiments were carried out using rice flag leaf of reproductive stage at 0 min, 20 min, 60 min, 2 hr, 4 hr, and 8 hr after the treatment of 40 degree centigrade, and the significantly expressed genes mainly involved in transcriptional regulation, transport, protein binding, antioxidant, and stress response were identified. Among them, the predominant transcription factor gene families were Hsf, NAC, AP2/ERF, WRKY, MYB, and C2H2. KMC analysis discovered the time-dependent gene expression pattern under heat. The metabolism pathway analysis demonstrated that, under heat treatment, glycolysis and ubiquitin-proteasome was enhanced, and TCA, gluconeogenesis, the secondary metabolism and light-reaction in the photosystem was dramatically repressed, which revealed the great importance of maintaining primary metabolism and protein homeostasis in response to heat in rice flag leaf.
Project description:Senescence is the ultimate stage of plant development. Among the different levels of senescence processes, flag leaf senescence plays a crucial role in determining grain quality in rice. In the present study, efforts are made to identify the possible involvement of miRNAs in flag leaf senescence. Four small RNA libraries were generated from different stages of flag leaf senescence and sequenced by Illumina deep sequencing. A total of 29 known miRNA families and 494 novel miRNAs were identified in the senescing flag leaves. 21 known and 116 novel miRNAs exhibited differential expression pattern. Computational prediction and analysis of putative targets of detected miRNAs revealed that miRNAs regulate the flag leaf senescence mainly by regulating transcription factors and hormone metabolism genes. The present study gives a clue about the senescence-associated miRNAs which can be used as a tool for manipulating flag leaf senescence in rice and other crops.
Project description:The lack of MIRNA set and genome sequence of O. rufipogon (the ancestor of the cultivated rice) has limited to answer the role of MIRNA genes in rice domestication. In this study, a genome, three small RNA populations and a degradome of O.rufipogon were sequenced by Illumina platform and miRNA expression were investigated by miRNA chips. A de novo genome was assembled using ~55x coverage of raw sequencing data and a total of 387 MIRNAs were identified in the O. rufipogon genome based on ~5.2 million unique small RNA reads from three different tissues of O. rufipogon. Of these O. rufipogon MIRNAs, 259 were not found in the cultivated rice, suggesting loss of these MIRNAs in the cultivated rice. We also found that 48 MIRNAs were novel in the cultivated rice, suggesting that they were potential targets of domestication selection. Some miRNAs showed significant expression difference in the wild and cultivated rice, suggesting that expression of miRNA could also be a target of domestication, as demonstrated for the miR164 family. Our results illustrated MIRNA genes, like protein-coding genes, were significantly shaped during rice domestication and could be one of the driven forces contributed to rice domestication.