Project description:siRNA mediated DUSP4 silencing in a cell line derived from a) AKT/NRAS double injected hepatocellular carcinoma in a mouse by hydrodynamic injection => AKT/NRAS and b) these cell lines with Cre knockout for AKT => AKT/NRAS Cre
Project description:MDA231, BT549, and SUM159PT basal-like breast cancer cell lines were transfected with non-targeting siRNA (siCONTROL), siRNA targeting DUSP4 (siDUSP4), or siCONTROL + 4 or 24 hr of 1uM selumetinib. Cells were harvested at 96 hr post-siRNA transfection. Data were Log2 RMA normalized. We sought to identify changes in gene expression after MEK inhibition, or after loss of DUSP4 function in breast cancer cell lines.
Project description:MDA231, BT549, and SUM159PT basal-like breast cancer cell lines were transfected with non-targeting siRNA (siCONTROL), siRNA targeting DUSP4 (siDUSP4), or siCONTROL + 4 or 24 hr of 1uM selumetinib. Cells were harvested at 96 hr post-siRNA transfection. Data were Log2 RMA normalized.
Project description:The epigenetic dysregulation of tumor suppressor genes is a major driver of human carcinogenesis. We have combined genome-wide methylation analyses with functional screening to identify novel candidate tumor suppressor genes in diffuse large B-cell lymphoma (DLBCL). We find that the dual-specificity phosphatase DUSP4 is aberrantly silenced in nodal and extranodal DLBCL due to promoter hypermethylation; ectopic expression of wild type DUSP4, but not of a phosphatase-deficient mutant, dephosphorylates c-JUN N-terminal kinase (JNK) and induces apoptosis in DLBCL cells. JNK inhibition prevents DLBCL survival in vitro and in vivo, and synergizes strongly with inhibitors of chronic active B-cell receptor signaling. Our results provide a mechanistic basis for the clinical development of JNK inhibitors in DLBCL, alone or in synthetic lethal combinations. A methylation profiling data set related to this experiment was also deposited at ArrayExpress under accession number E-MTAB-2926: http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-2926/
Project description:The epigenetic dysregulation of tumor suppressor genes is a major driver of human carcinogenesis. We have combined genome-wide methylation analyses with functional screening to identify novel candidate tumor suppressor genes in diffuse large B-cell lymphoma (DLBCL). We find that the dual-specificity phosphatase DUSP4 is aberrantly silenced in nodal and extranodal DLBCL due to promoter hypermethylation; ectopic expression of wild type DUSP4, but not of a phosphatase-deficient mutant, dephosphorylates c-JUN N-terminal kinase (JNK) and induces apoptosis in DLBCL cells. JNK inhibition prevents DLBCL survival in vitro and in vivo, and synergizes strongly with inhibitors of chronic active B-cell receptor signaling. Our results provide a mechanistic basis for the clinical development of JNK inhibitors in DLBCL, alone or in synthetic lethal combinations. RNA-seq expression profiling data set related to this experiment was also deposited at ArrayExpress under accession number E-MTAB-2925: http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-2925/
Project description:Clear cell renal cell carcinoma (ccRCC) is the most diagnosed malignancy in kidney. Studies on the role of circular RNAs in kidney cancer are increasing. In this study, we employed high throughput sequencing and tissue micro array to detect and verify one of the key circular RNAs, circFTO, in ccRCC. The effect of circFTO on the proliferation and invasiveness of ccRCC cells and the corresponding mechanism were studied both in vitro and in vivo via multiple methods. We confirmed that circFTO was up regulated in ccRCC and correlated with a more aggressive phenotype. The up regulated circFTO could sponge and block the function of miR-514b-3p, a reported tumor suppressor, and caused overexpression of DUSP4. DUSP4 was found to lead to KRAS/ERK pathway activation, increased epithelial-mesenchymal transition (EMT) and inhibition of autophagy in ccRCC cells, which in the end boosted the proliferation and invasiveness of ccRCC. We thus concluded that circFTO/miR-514b-3p/DUSP4 axis may play an important role in ccRCC development and could be a potential biomarker and therapeutic target.