Project description:Arsenic (As) bioavailability in the rice rhizosphere is influenced by many microbial interactions, particularly by metal-transforming functional groups at the root-soil interface. This study was conducted to examine As-transforming microbes and As-speciation in the rice rhizosphere compartments, in response to two different water management practices (continuous and intermittently flooded), established on fields with high to low soil-As concentration. Microbial functional gene composition in the rhizosphere and root-plaque compartments were characterized using the GeoChip 4.0 microarray. Arsenic speciation and concentrations were analyzed in the rhizosphere soil, root-plaque, porewater and grain samples. Results indicated that intermittent flooding significantly altered As-speciation in the rhizosphere, and reduced methyl-As and AsIII concentrations in the pore water, root-plaque and rice grain. Ordination and taxonomic analysis of detected gene-probes indicated that root-plaque and rhizosphere assembled significantly different metal-transforming functional groups. Taxonomic non-redundancy was evident, suggesting that As-reduction, -oxidation and -methylation processes were performed by different microbial groups. As-transformation was coupled to different biogeochemical cycling processes establishing functional non-redundancy of rice-rhizosphere microbiome in response to both rhizosphere compartmentalization and experimental treatments. This study confirmed diverse As-biotransformation at root-soil interface and provided novel insights on their responses to water management, which can be applied for mitigating As-bioavailability and accumulation in rice grains.
Project description:Advances in DNA sequencing technologies has drastically changed our perception of the structure and complexity of the plant microbiome. By comparison, our ability to accurately identify the metabolically active fraction of soil microbiota and its specific functional role in augmenting plant health is relatively limited. Here, we combined our recently developed protein extraction method and an iterative bioinformatics pipeline to enable the capture and identification of extracellular proteins (metaexoproteomics) synthesised in the rhizosphere of Brassica spp. We first validated our method in the laboratory by successfully identifying proteins related to a host plant (Brassica rapa) and its bacterial inoculant, Pseudomonas putida BIRD-1. This identified numerous rhizosphere specific proteins linked to the acquisition of plant-derived nutrients in P. putida. Next, we analysed natural field-soil microbial communities associated with Brassica napus L. (oilseed rape). By combining metagenomics with metaexoproteomics, 1882 proteins were identified across bulk and rhizosphere samples. Meta-exoproteomics identified a clear shift (p<0.001) in the metabolically active fraction of the soil microbiota responding to the presence of B. napus roots that was not apparent in the composition of the total microbial community (metagenome). This metabolic shift was associated with the stimulation of rhizosphere-specialised bacteria, such as Gammaproteobacteria, Betaproteobacteria and Flavobacteriia and the upregulation of plant beneficial functions related to phosphorus and nitrogen mineralisation. Together, our metaproteomic assessment of the ‘active’ plant microbiome at the field-scale demonstrates the importance of moving past a genomic assessment of the plant microbiome in order to determine ecologically important plant-microbe interactions underpinning plant health.
Project description:Advances in DNA sequencing technologies has drastically changed our perception of the structure and complexity of the plant microbiome. By comparison, our ability to accurately identify the metabolically active fraction of soil microbiota and its specific functional role in augmenting plant health is relatively limited. Here, we combined our recently developed protein extraction method and an iterative bioinformatics pipeline to enable the capture and identification of extracellular proteins (metaexoproteomics) synthesised in the rhizosphere of Brassica spp. We first validated our method in the laboratory by successfully identifying proteins related to a host plant (Brassica rapa) and its bacterial inoculant, Pseudomonas putida BIRD-1. This identified numerous rhizosphere specific proteins linked to the acquisition of plant-derived nutrients in P. putida. Next, we analysed natural field-soil microbial communities associated with Brassica napus L. (oilseed rape). By combining metagenomics with metaexoproteomics, 1882 proteins were identified across bulk and rhizosphere samples. Meta-exoproteomics identified a clear shift (p<0.001) in the metabolically active fraction of the soil microbiota responding to the presence of B. napus roots that was not apparent in the composition of the total microbial community (metagenome). This metabolic shift was associated with the stimulation of rhizosphere-specialised bacteria, such as Gammaproteobacteria, Betaproteobacteria and Flavobacteriia and the upregulation of plant beneficial functions related to phosphorus and nitrogen mineralisation. Together, our metaproteomic assessment of the ‘active’ plant microbiome at the field-scale demonstrates the importance of moving past a genomic assessment of the plant microbiome in order to determine ecologically important plant-microbe interactions underpinning plant health.
Project description:Advances in DNA sequencing technologies has drastically changed our perception of the structure and complexity of the plant microbiome. By comparison, our ability to accurately identify the metabolically active fraction of soil microbiota and its specific functional role in augmenting plant health is relatively limited. Here, we combined our recently developed protein extraction method and an iterative bioinformatics pipeline to enable the capture and identification of extracellular proteins (metaexoproteomics) synthesised in the rhizosphere of Brassica spp. We first validated our method in the laboratory by successfully identifying proteins related to a host plant (Brassica rapa) and its bacterial inoculant, Pseudomonas putida BIRD-1. This identified numerous rhizosphere specific proteins linked to the acquisition of plant-derived nutrients in P. putida. Next, we analysed natural field-soil microbial communities associated with Brassica napus L. (oilseed rape). By combining metagenomics with metaexoproteomics, 1882 proteins were identified across bulk and rhizosphere samples. Meta-exoproteomics identified a clear shift (p<0.001) in the metabolically active fraction of the soil microbiota responding to the presence of B. napus roots that was not apparent in the composition of the total microbial community (metagenome). This metabolic shift was associated with the stimulation of rhizosphere-specialised bacteria, such as Gammaproteobacteria, Betaproteobacteria and Flavobacteriia and the upregulation of plant beneficial functions related to phosphorus and nitrogen mineralisation. Together, our metaproteomic assessment of the ‘active’ plant microbiome at the field-scale demonstrates the importance of moving past a genomic assessment of the plant microbiome in order to determine ecologically important plant-microbe interactions underpinning plant health.
Project description:Background: The soil environment is responsible for sustaining most terrestrial plant life on earth, yet we know surprisingly little about the important functions carried out by diverse microbial communities in soil. Soil microbes that inhabit the channels of decaying root systems, the detritusphere, are likely to be essential for plant growth and health, as these channels are the preferred locations of new root growth. Understanding the microbial metagenome of the detritusphere and how it responds to agricultural management such as crop rotations and soil tillage will be vital for improving global food production. Methods: The rhizosphere soils of wheat and chickpea growing under + and - decaying root were collected for metagenomics sequencing. A gene catalogue was established by de novo assembling metagenomic sequencing. Genes abundance was compared between bulk soil and rhizosphere soils under different treatments. Conclusions: The study describes the diversity and functional capacity of a high-quality soil microbial metagenome. The results demonstrate the contribution of the microbiome from decaying root in determining the metagenome of developing root systems, which is fundamental to plant growth, since roots preferentially inhabit previous root channels. Modifications in root microbial function through soil management, can ultimately govern plant health, productivity and food security.
Project description:Iron (Fe) deficiency is a yield-limiting factor for a variety of field crops across the world and generally results from the interaction of limited soil Fe bioavailability and susceptible genotype cultivation. Tomato, a Strategy I, model plant for Fe deficiency, is an important economical crop. Tomato responses in order to improve Fe uptake are based on acidification of rhizosphere, reduction of Fe3+ to Fe2+ and transport of Fe2+ into the cells.
Project description:Bacterial wilt caused by Ralstonia solanacearum is a lethal, soil-borne disease of tomato. Control of the disease with chemicals and crop rotation is insufficient, because the pathogen is particularly well adapted for surviving in the soil and rhizosphere. Therefore, cultivar resistance is the most effective means for controlling bacterial wilt, but the molecular mechanisms of resistance responses remain unclear. We used microarrays to obtain the characteristics of the gene expression changes that are induced by R. solanacearum infection in resistant cultivar LS-89 and susceptible cultivar Ponderosa.
Project description:We used wheat as rotational crop to assess the influence of continuous cropping on microbiome in Pinellia ternata rhizosphere and the remediation of rotational cropping to the impacted microbiota. Illumina high-throughput sequencing technology was utilized for this method to explore the rhizosphere microbial structure and diversity based on continuous and rotational cropping.
Project description:Iron (Fe) deficiency is a yield-limiting factor for a variety of field crops across the world and generally results from the interaction of limited soil Fe bioavailability and susceptible genotype cultivation. Tomato, a Strategy I, model plant for Fe deficiency, is an important economical crop. Tomato responses in order to improve Fe uptake are based on acidification of rhizosphere, reduction of Fe3+ to Fe2+ and transport of Fe2+ into the cells. Transcriptional profile obtained by roots (27-d) of 21-d-old tomato plants starved of iron for an additional week was compared with the transcriptional profile obtained for roots (27-d) of 21-d-old tomato plants grown for an additional week at 100 M-NM-<M Fe. Tomato plants were hydroponically grown in both cases. Three different biological replicates were used for each sample repeating the experiment three times. All samples were obtained pooling roots of six plants (27-d-old).
Project description:Arbuscular mycorrhizal (AM) fungi contribute to plant nutrient uptake in systems managed with reduced fertilizer inputs such as organic agriculture and natural ecosystems by extending the effective size of the rhizosphere and delivering mineral. Connecting the molecular study of the AM symbiosis with agriculturally- and ecologically-relevant field environments remains a challenge and is a largely unexplored research topic. This study utilized a cross-disciplinary approach to examine the transcriptional, metabolic, and physiological responses of tomato (Solanum lycopersicum) AM roots to a localized patch of nitrogen (N). A wild-type mycorrhizal tomato and a closely-related nonmycorrhizal mutant were grown at an organic farm in soil that contained an active AM extraradical hyphal network and soil microbe community. The majority of genes regulated by upon enrichment of nitrogen were similarly expressed in mycorrhizal and nonmycorrhizal roots, suggesting that the primary response to an enriched N patch is mediated by mycorrhiza-independent root processes. However where inorganic N concentrations in the soil were low, differential regulation of key tomato N transport and assimilation genes indicate a transcriptome shift towards mycorrhiza-mediated N uptake over direct root supplied N. Furthermore, two novel mycorrhizal-specific tomato ammonium transporters were also found to be regulated under low N conditions. A conceptual model is presented integrating the transcriptome response to low N and highlighting the mycorrhizal-specific ammonium transporters. These results enhance our understanding of the role of the AM symbiosis in sensing and response to an enriched N patch, and demonstrate that transcriptome analyses of complex plant-microbe-soil interactions provide a global snapshot of biological processes relevant to soil processes in organic agriculture.