Project description:we conducted integrative multiple levels of omics data including transcriptome, phosphoproteome, proteome and metabolome in different time-course of sepsis-associated liver dysfunction (SALD). This is the first trial to suggest the statistical pathway of integrative multi-omics data in sepsis. Given the increasing number of studies collecting multi-omics data but limited overview of the methodological framework for integrative analyses (Liu, Ding et al. 2013, Petersen, Zeilinger et al. 2014, Shah, Bonder et al. 2015), integrative approach in sepsis with liver dysfunction in this study will provide novel insights into the development of sepsis and ultimately offer new tools for overcoming the present diagnostic limitation. Therefore, a combined multi-omics dataset will give better accessibility of adoption in disease, and insight to identify the promising candidates for therapeutic strategies.
Project description:Intestinal organoids accurately recapitulate epithelial homeostasis in vivo, thereby representing a powerful in vitro system to investigate lineage specification and cellular differentiation. Here, we applied a multi-omics framework on stem cell-enriched and stem cell-depleted mouse intestinal organoids to obtain a holistic view of the molecular mechanisms that drive differential gene expression during adult intestinal stem cell differentiation. Our data revealed a global rewiring of the transcriptome and proteome between intestinal stem cells and enterocytes, with the majority of dynamic protein expression being transcription-driven. Integrating absolute mRNA and protein copy numbers revealed post-transcriptional regulation of gene expression. Probing the epigenetic landscape identified a large number of cell-type-specific regulatory elements, which revealed Hnf4g as a major driver of enterocyte differentiation. In summary, by applying an integrative systems biology approach, we uncovered multiple layers of gene expression regulation, which contribute to lineage specification and plasticity of the mouse small intestinal epithelium.
Project description:The pathogenesis of Colorectal cancer (CRC) metastasis remains unclear.We collect clinical data from our center and use Integrative omics to analyze and predict candidate biomarkers of colorectal cancer and distant metastasis.