Project description:Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic diseases globally and nonalcoholic steatohepatitis is its progressive stage with limited therapeutic options. Here a role for intestinal peroxisome proliferator-activated receptor α (PPARα)-fatty acid binding protein 1 (FABP1) in obesity-associated metabolic syndrome, fatty liver and nonalcoholic steatohepatitis via modulating dietary fat absorption was uncovered. Intestinal PPARα is highly activated accompanied by marked upregulation of FABP1 by high-fat diet (HFD) in mice and obese humans. Intestine-specific PPARα or FABP1 disruption in mice decreases HFD-induced obesity, fatty liver and nonalcoholic steatohepatitis and intestinal PPARα disruption fails to further decrease obesity and NASH. Chemical PPARα antagonism improves metabolic disorders depending on the presence of intestinal PPARα or FABP1. Translationally, GW6471 decreases human PPARα-driven intestinal fatty acid uptake and therapeutically improves obesity in PPARA-humanized, but not Ppara-null, mice. These results suggest that intestinal PPARα-FABP1 axis could be a therapeutic target for NASH.
Project description:The farnesoid X receptor (FXR) is a nuclear receptor activated by bile acids and regulates bile acid metabolism, glucose and cholesterol homeostasis. From mouse studies we know that the novel FXR agonist obeticholic acid (OCA) regulates expression of many genes in the liver, but there is currently no data on the effects of OCA on human liver gene expression. This is especially relevant since the novel FXR agonist OCA is currently tested in clinical trials for the treatment of several diseases, such as nonalcoholic steatohepatitis (NASH), nonalcoholic fatty liver disease (NAFLD) and Type 2 Diabetes. In this study we investigate the effect of OCA treatment on gene expression profiles and localization of FXR to the genome in relevant liver samples. ChIP-Seq for FXR in Liver tissue from 2 male mice treated with OCA/INT-747 (10mg/kg/day) and 2 male mice treated with vehicle (1% methyl cellulose).
Project description:The current study was designed to determine if dietary fatty acid concentration and composition affects the development and progression of nonalcoholic fatty liver disease. Male SD rats were overfed diets low (5%) or high (70%) fat diets via total enteral nutrition where the fat source was olive oil (monounsaturated), or corn oil (polyunsaturated). Overfeeding 5% corn oil produced little steatosis relative to feeding 5% olive oil. This was associated with lower fatty acid synthesis and reduced SREBP-c signaling in the 5% corn oil group. Overfeeding 70% fat diets increased steatosis and lead to increased liver necrosis in the 70% corn oil but not olive oil group. Increased injury after feeding polyunsaturated fat diets was linked to peroxidizability of hepatic free fatty acids and triglycerides and appearance of peroxidaized lipid products HETES and HODES previously linked to clinical nonalcoholic steatohepatitis. Male SD rats were overfed diets low (5%) or high (70%) fat diets via total enteral nutrition where the fat source was olive oil (monounsaturated) or corn oil (polyunsaturated).
Project description:This SuperSeries is composed of the following subset Series: GSE30447: Foxa1 Reduces Lipid Accumulation in Human Hepatocytes and Is Down-regulated in Nonalcoholic Fatty Liver (HepG2 data) GSE30450: Foxa1 Reduces Lipid Accumulation in Human Hepatocytes and Is Down-regulated in Nonalcoholic Fatty Liver (hepatocytes data) Refer to individual Series
Project description:The farnesoid X receptor (FXR) is a nuclear receptor activated by bile acids and regulates bile acid metabolism, glucose and cholesterol homeostasis. From mouse studies we know that the novel FXR agonist obeticholic acid (OCA) regulates expression of many genes in the liver, but there is currently no data on the effects of OCA on human liver gene expression. This is especially relevant since the novel FXR agonist OCA is currently tested in clinical trials for the treatment of several diseases, such as nonalcoholic steatohepatitis (NASH), nonalcoholic fatty liver disease (NAFLD) and Type 2 Diabetes. In this study we investigate the effect of OCA treatment on gene expression profiles and localization of FXR to the genome in relevant liver samples.
Project description:The current study was designed to determine if dietary fatty acid concentration and composition affects the development and progression of nonalcoholic fatty liver disease. Male SD rats were overfed diets low (5%) or high (70%) fat diets via total enteral nutrition where the fat source was olive oil (monounsaturated), or corn oil (polyunsaturated). Overfeeding 5% corn oil produced little steatosis relative to feeding 5% olive oil. This was associated with lower fatty acid synthesis and reduced SREBP-c signaling in the 5% corn oil group. Overfeeding 70% fat diets increased steatosis and lead to increased liver necrosis in the 70% corn oil but not olive oil group. Increased injury after feeding polyunsaturated fat diets was linked to peroxidizability of hepatic free fatty acids and triglycerides and appearance of peroxidaized lipid products HETES and HODES previously linked to clinical nonalcoholic steatohepatitis.
Project description:Mechanism and Experimental Verification of Xiaoyao San in the Treatment of Nonalcoholic Fatty Liver Disease in Rats Using Transcriptomics and Proteomics Analysis