Project description:We have compared the gene expression profile of post-natal 1 day and 7 day rat Achilles tendons. Post-natal 1 day and 7 day rat Achilles tendons were collected. Each sample contains at least two individuals. Total RNA was extracted and fragmented biotin-tagged cRNA was hybridized to Rat Genome 230 2.0 Array.
Project description:The circadian clock is an evolutionarily conserved mechanism that drives rhythmic expression of downstream genes. The core circadian clock drives the expression of clock-controlled genes either directly or indirectly, which in turn play critical roles in carrying out many rhythmic physiological processes. Nevertheless, the molecular mechanisms by which clock output genes orchestrate rhythmic signals from the brain to peripheral tissues are largely unknown. Here we explored the role of one rhythmic gene, Achilles, in regulating the rhythmic transcriptome in fly heads. Achilles is a clock-controlled gene in Drosophila that encodes a putative RNA-binding protein. Achilles expression is not detectable in core clock neurons using in-situ hybridization, although its expression is found in neurons throughout the fly brain. Together, these observations argue against a role for Achilles in regulating the core clock. To assess its impact on circadian mRNA rhythms, we performed RNA sequencing (RNAseq) to compare the rhythmic transcriptomes of control flies and those with diminished Achilles expression in all neurons. Consistent with previous observations, we observe dramatic upregulation of immune response genes upon knock-down of Achilles. Furthermore, a subset of circadian mRNAs lose their rhythmicity in Achilles knock-down flies, suggesting that a subset of the rhythmic transcriptome is regulated either directly or indirectly by Achilles. These Achilles-mediated rhythms include many genes involved in immune function and neuronal signaling such as Prosap, Nemy and Jhl-21. Comparison of RNAseq data from control flies reveal that only 42.7% of clock-controlled genes in the fly brain are rhythmic in both males and females. As mRNA rhythms of core clock genes are largely invariant between the sexes, this observation suggests that sex-specific mechanisms are an important, and heretofore under-appreciated, regulator of the rhythmic transcriptome.
Project description:The purpose of this study is to explore the influence of the morpho-physiological of Sinapis alba L in response to cadmium challenge
Project description:The Achilles tendon is the thickest tendon in the human body, and Achilles tendinopathy is its most prevalent disorder, often considered a consequence of overuse. While disruption to the collagen fibers represents a significant manifestation of Achilles tendinopathy, strikingly little is known about the mechanisms by which healthy tendon accumulates damage in vivo.As existing studies of tendon biomechanics and mechanobiology predominantly relied on in vitro or ex vivo experiments on isolated tissues, it is still largely unknown whether and how disruptions occur to the collagen molecules in healthy Achilles tendons following physiological activities. We reported the first RNA-seq analysis reflecting transcriptome changes in healthy rat Achilles tendons following running, providing a resource for future investigations in tendon mechanobiology and sports medicine.
Project description:Achilles tendinopathy is often thought to be a consequence of overuse of the Cells within the Achilles tendon of healthy rats undergo a series of changes following physiologic levels of mechanical stimulation after running, and we further explored the transcriptome changes in Achilles tendon cells during post-exercise recovery. Our current experiment reveals RNA-seq analysis of the transcriptome of the rat Achilles tendon after 12 hours of rest following running.