Project description:The variations in the protein profile of aortic-valvular (AVE) and endocardial endothelial (EE) cells are currently unknown. The current study's objective is to identify differentially expressed proteins and associated pathways in both endothelial cells. We used endothelial cells isolated from the porcine aortic valve and endocardium for the profiling of proteins. Label-free proteomics was performed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Our proteomics analysis revealed that 29 proteins were highly expressed, and 25 proteins were less represented in the valve than endocardial endothelium. The first part of the study was already available in the ProteomeXchange Consortium (PXD009194).
Project description:Endocardial (EE) and Aortic (AE) endothelial cells were isolated from the same two rats, pooled (EE and AE kept separately) and cultured for 2 passages. Culture conditions and confluence of EE and AE cell cultures were kept as identical as possible. RNA was isolated and the expression profile of both endothelial cell types was compared using the Affymetrix rat genome U34A array.
Project description:Endocardial endothelium, which lines the chambers of the heart, is distinct in its origin, structure, and function. However, though functionally very important, no studies at protein level have been conducted so far characterizing endocardial endothelium. In this study, we used endothelial cells from pig heart to investigate if endocardial endothelial cells are distinct at the proteome level. Using a high throughput liquid chromatography-tandem mass spectrometry for proteome profiling and expression, we identified sets of proteins that belong to specific biological processes and metabolic pathways in endocardial endothelial cells supporting its specific structural and functional roles.