Project description:We conducted a calculi rat model, applied for an integrated proteomic and transcriptomic analysis to characterize the distinct gene expression profiles in calculi oxalate stone formation and its related kidney injury. Six distinct gene clusters were identified according to the consistency of transcriptome and proteome. Gene Ontology and KEGG pathway enrichment was performed to analyze the functions of each sub-group differentially expressed genes. Results showed that the calculi rat kidney was increased expression of injured & apoptotic markers and immune-molecules, and decreased expression of solute carriers & transporters and many metabolic related factors. The present proteotranscriptomic study provided a data resource and new insights for better understanding of the pathogenesis of nephrolithiasis, will hopefully facilitate the future development of new strategies for the recurrence prevention and treatment in patients with kidney stone disease.
Project description:Kidney stone disease is influenced by multiple factors, including but not limited to age, gender, genetic background, hydration status, diet and drug. Regarding the gender, epidemiologic data across the world has shown that females at the reproductive age (15-49 years) have lower incidence/prevalence of kidney stone disease approximately 1.5-2.5 folds as compared to males at the same age. However, this gap is narrower in the postmenopausal age, whereas the postmenopausal females with higher serum estrogen levels are less likely to have kidney stones. Furthermore, female stone formers (patients with kidney stones) are associated with lower estrogen levels. Therefore, estrogen has been proposed to serve as the protective hormone against kidney stone disease. However, the precise mechanisms underlying such protective effects of estrogen remain unclear and require further investigations. This study thus investigated the effects of estradiol (which is the most prevalent and potent form of estrogen in females at the reproductive age) on cellular proteome of renal tubular cells using a proteomics approach.
Project description:Kidney stone disease causes significant morbidity and increases health care utilization. In this dataset, we applied a single-nucleus assay to renal papila samples in order to charachterize the cellular and molecular niches in patients with calcium oxalate (CaOx) stone disease and healthy subjects. In addition to identifying cell types important in papillary physiology, we characterize collecting duct cell subtypes and an undifferentiated epithelial cell type that was more prevalent in stone patients. Despite the focal nature of mineral deposition in nephrolithiasis, we uncover a global injury signature characterized by immune activation, oxidative stress and extracellular matrix remodeling. We also identify the association of MMP7 and MMP9 expression with stone disease and mineral deposition, respectively. MMP7 and MMP9 are significantly increased in the urine of patients with CaOx stone disease, and their levels correlate with disease activity. Our results define the spatial molecular landscape and specific pathways contributing to stone-mediated injury in the human papilla and identify associated urinary biomarkers.
Project description:OBJECTIVES: Kidney stone diseases are common in premature infants, but the underlying molecular and cellular mechanisms are not fully defined. We carried out a prospective observational study using microarray analysis to identify factors that may be crucial for the initiation and progression of stone-induced injury in the developing mouse kidney. METHODS: Mice with adenine phosphoribosyltransferase (Aprt) deficiency develop 2,8-dihydroxyadenine (DHA) nephrolithiasis. Gene expression changes between Aprt-/- and Aprt+/+ kidneys from newborn and adult mice were compared using Affymetrix gene chips. RESULTS: We observed that: (i) gene expression changes induced by Aprt deficiency are developmental stage-specific; (ii) maturation-related gene expression changes are delayed in developing Aprt-/- kidneys; and (iii) immature Aprt-deficient kidneys contain large numbers of intercalated cells blocked from terminal differentiation. CONCLUSIONS: This study presents a comprehensive picture of the transcriptional changes induced by stone injury in the developing mouse kidney. Our findings help explain growth impairment in kidneys subject to injury during the early stages of development.
Project description:OBJECTIVES: Kidney stone diseases are common in premature infants, but the underlying molecular and cellular mechanisms are not fully defined. We carried out a prospective observational study using microarray analysis to identify factors that may be crucial for the initiation and progression of stone-induced injury in the developing mouse kidney. METHODS: Mice with adenine phosphoribosyltransferase (Aprt) deficiency develop 2,8-dihydroxyadenine (DHA) nephrolithiasis. Gene expression changes between Aprt-/- and Aprt+/+ kidneys from newborn and adult mice were compared using Affymetrix gene chips. RESULTS: We observed that: (i) gene expression changes induced by Aprt deficiency are developmental stage-specific; (ii) maturation-related gene expression changes are delayed in developing Aprt-/- kidneys; and (iii) immature Aprt-deficient kidneys contain large numbers of intercalated cells blocked from terminal differentiation. CONCLUSIONS: This study presents a comprehensive picture of the transcriptional changes induced by stone injury in the developing mouse kidney. Our findings help explain growth impairment in kidneys subject to injury during the early stages of development. Total RNA were extracted from kidneys of 12 newly born and 6 adult mice (half Aprt-/- and half control). Gene expression changes between Aprt-/- and Aprt+/+ kidneys from newborn and adult mice were compared using Affymetrix gene chips.
Project description:Kidney stone disease causes significant morbidity and increases health care utilization. The pathogenesis of stone disease is incompletely understood, due in part to the poor characterization of the cellular and molecular makeup of the human papilla and its alteration with disease. In this work, we characterize the human renal papilla in health and calcium oxalate stone disease using single nuclear RNA sequencing, spatial transcriptomics and high-resolution large scale multiplexed 3D and Co-Detection by indexing (CODEX) imaging. We define and localize subtypes of principal cells enriched in the papilla as well as immune and stromal cell populations. We further uncovered an undifferentiated epithelial cell signature in the papilla, particularly during nephrolithiasis.
Project description:In order to explore how S100A8 and S100A9 may participate in the kidney stone formation, we used recombinant S100A8, recombinant S100A9, or recombinant S100A8/S100A9 heterodimer to culture the HK-2 cells and then sequenced total cellular mRNAS.