Project description:Long non-coding RNAs (lncRNAs) have been identified in various tissues and cell types from human, monkey, porcine and mouse. However, expression profile of lncRNAs across Guangxi native cattle and swamp buffalo muscle development has never been investigated. Here, we examine the expression of lncRNA in cattle and buffalo muscle at adult stage(12 months), exhibiting the first report of lncRNA in the Guangxi native cattle and swamp buffalo muscle development of a large animal. 16,236 lncRNA candidates were obtained from buffalo skeletal muscle samples, of which a number of lncRNAs were highly abundant, and 2,161 lncRNAs were differentially expressed between buffalo and cattle. Real-time quantitative PCR (qPCR) analysis confirmed the expression profile of these lncRNAs, including several highly abundant lncRNAs, and a subset of differently expressed lncRNAs according to the high-throughput RNA sequencing (RNA-seq) data. These results indicate that abundant lncRNA is differentially expressed in bovine muscle, indicating important and diverse functions in mammalian muscle development.
Project description:The swamp eel or rice field eel (Monopterus albus) taxonomically belongs to the family Synbranchidae of the order Synbranchiformes (Neoteleostei, Teleostei, Vertebrata). It is not only an economically important freshwater fish in aquacultural production, but also an increasingly known model species for biological studies. Understanding molecular mechanisms underlying sex change is a major area of interest. The swamp eel thus offers a powerful system for studying sexual development and adaptive evolution in vertebrates.The whole genome sequencing provides valuable resources for sex control in fish production, species protection through manipulating sex reversal genes, and potentially enabling effective population control and promoting reproduction health in human. High throughput sequencing was employed for three samples,three kind s of sex gonad from swamp eel, testis,ovotestis and ovary, no replicates.
Project description:The swamp eel or rice field eel (Monopterus albus) taxonomically belongs to the family Synbranchidae of the order Synbranchiformes (Neoteleostei, Teleostei, Vertebrata). It is not only an economically important freshwater fish in aquacultural production, but also an increasingly known model species for biological studies. Understanding molecular mechanisms underlying sex change is a major area of interest. The swamp eel thus offers a powerful system for studying sexual development and adaptive evolution in vertebrates.The whole genome sequencing provides valuable resources for sex control in fish production, species protection through manipulating sex reversal genes, and potentially enabling effective population control and promoting reproduction health in human.
Project description:Primary objectives: The primary objective is to investigate circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Primary endpoints: circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Project description:Chinese and Philippine strains of the blood fluke Schistosoma japonicum present clear and distinctive phenotypes in areas of fecundity, pathology, drug sensitivity and immunology. Despite these differences large scale sequencing efforts have focused solely on Chinese mainland strain of the parasite. We have undertaken a comparative genomic hybridisation (CGH) approach to highlight some of the structural differences in the genome of two of the major geographical isolates of S. japonicum. We identified seven distinct regions of the S. japonicum genome that present differential CGH between Chinese and Philippine strains of the blood fluke Schistosoma japonicum, representing either deletion or duplication regions in the Philippine strain. Within these regions, genes that may be related to phenotypical differences are identified and discussed.
Project description:Chinese and Philippine strains of the blood fluke Schistosoma japonicum present clear and distinctive phenotypes in areas of fecundity, pathology, drug sensitivity and immunology. Despite these differences large scale sequencing efforts have focused solely on Chinese mainland strain of the parasite. We have undertaken a comparative genomic hybridisation (CGH) approach to highlight some of the structural differences in the genome of two of the major geographical isolates of S. japonicum. We identified seven distinct regions of the S. japonicum genome that present differential CGH between Chinese and Philippine strains of the blood fluke Schistosoma japonicum, representing either deletion or duplication regions in the Philippine strain. Within these regions, genes that may be related to phenotypical differences are identified and discussed. Genomic DNA was isolated from adult (7 week post cercarial challenge) Schistosoma japonicum Chinese and Philippine isolates and separate maleand femalesamples comparatively hybridised on an Agilent customn designed oligo microarray.