Project description:The objective was to identify functional genes encoded by Fungi and fungal-like organisms to assess putative ecological roles Using the GeoChip microarray, we detected fungal genes involved in the complete assimilation of nitrate and the degradation of lignin, as well as evidence for Partitiviridae (a mycovirus) that likely regulates fungal populations in the marine environment. These results demonstrate the potential for fungi to degrade terrigenously-sourced molecules, such as permafrost and compete with algae for nitrate during blooms. Ultimately, these data suggest that marine fungi could be as important in oceanic ecosystems as they are in freshwater environments.
Project description:The marine diatom Guinardia delicatula is a cosmopolitan species that dominates seasonal blooms in the English Channel and the North Sea. Several eukaryotic parasites are known to induce the mortality of this key-stone species. Here, we report the isolation and the characterization of the first viruses that infect G. delicatula. Viruses were isolated from the Western English Channel (SOMLIT-ASTAN station) during the late summer bloom decline of G. delicatula. A combination of laboratory approaches revealed that these lytic viruses (GdelRNAV) are small untailed particles of 35-38 nm in diameter that replicated in the host cytoplasm where both unordered particles and crystalline arrays were formed. GdelRNAV displayed a linear single-stranded RNA genome of ~9 kb, including two open reading frames encoding for replication and structural polyproteins. Phylogenetic relationships based on the RNA-dependent-RNA-polymerase gene marker showed that GdelRNAV were new members of the Bacillarnavirus, a monophyletic genus belonging to the order Picornavirales. GdelRNAV were specific to several strains of G. delicatula, they were produced rapidly (< 12h) and in numbers (9.34 x 104 virions per host cell). We recorded a substantial delay (72 h) between virions release and host cell lysis. Our analysis points to variable viral susceptibilities of the host during the early exponential growth phase. Interestingly, we consistently failed to isolate viruses during spring and early summer while G. delicatula developed rapid and massive blooms. While our study suggests that viruses do contribute to the decline of G. delicatula late summer bloom, they may not be the primary mortality agents during the remaining blooms at SOMLIT-ASTAN. Future studies should focus on the relative contribution of the viral and eukaryotic pathogens to the control of Guinardia blooms to understand the fate of these prominent organisms in marine systems.
Project description:Lytic viruses have been implicated in the massive cellular lysis observed during algal blooms, through which they assume a prominent role in oceanic carbon and nutrient flows. Despite their impact on biogeochemical cycling, the transcriptional dynamics of these important oceanic events is still poorly understood. Here, we employ an oligonucleotide microarray to monitor host (Emiliania huxleyi) and virus (coccolithovirus) transcriptomic features during the course of E. huxleyi blooms induced in seawater-based mesocosm enclosures. Host bloom development and subsequent coccolithovirus infection was associated with a major shift in transcriptional profile. In addition to the expected metabolic requirements typically associated with viral infection (amino acid and nucleotide metabolism, as well as transcription- and replication-associated functions), the results strongly suggest that the manipulation of lipid metabolism plays a fundamental role during host-virus interaction. The results herein reveal the scale, so far massively underestimated, of the transcriptional domination that occurs during coccolithovirus infection in the natural environment. Six mesocosm enclosures were placed in the Raunefjorden (Western Norway coast) and filled with natural community water (in June 2008). Nutrient enrichment was applied in order to trigger the development of E. huxleyi blooms. The major transcriptomic features of those blooms and consequent viral infections were monitered through the use of an oligo microarray containing a total of 3571 gene probes; 2271 (63.6%) matching E. huxleyi ESTs, and 1300 (36.4%) matching EhV-86 and EhV-163 genomic sequences. Each microarray contains 5 technical replicates. Sampling of total RNA present in 2L of water (from each enclosure) was performed once a day from day 8 to day 16. For enclosures 2 and 3 other sampling points were taken, covering the complete dial-cycle (6h,12h,18h, and 24h).
Project description:Lytic viruses have been implicated in the massive cellular lysis observed during algal blooms, through which they assume a prominent role in oceanic carbon and nutrient flows. Despite their impact on biogeochemical cycling, the transcriptional dynamics of these important oceanic events is still poorly understood. Here, we employ an oligonucleotide microarray to monitor host (Emiliania huxleyi) and virus (coccolithovirus) transcriptomic features during the course of E. huxleyi blooms induced in seawater-based mesocosm enclosures. Host bloom development and subsequent coccolithovirus infection was associated with a major shift in transcriptional profile. In addition to the expected metabolic requirements typically associated with viral infection (amino acid and nucleotide metabolism, as well as transcription- and replication-associated functions), the results strongly suggest that the manipulation of lipid metabolism plays a fundamental role during host-virus interaction. The results herein reveal the scale, so far massively underestimated, of the transcriptional domination that occurs during coccolithovirus infection in the natural environment.
Project description:Increasing atmospheric CO2 concentrations are causing decreased pH over vast expanses of the ocean. This decreasing pH may alter biogeochemical cycling of carbon and nitrogen via the microbial process of nitrification, a key process that couples these cycles in the ocean, but which is often sensitive to acidic conditions. Recent reports indicate a decrease in oceanic nitrification rates under experimentally lowered pH. How composition and abundance of ammonia oxidizing bacteria (AOB) and archaea (AOA) assemblages respond to decreasing oceanic pH, however, is unknown. We sampled microbes from two different acidification experiments and used a combination of qPCR and functional gene microarrays for the ammonia monooxygenase gene (amoA) to assess how acidification alters the structure of ammonia oxidizer assemblages. We show that despite widely different experimental conditions, acidification consistently altered the community composition of AOB by increasing the relative abundance of taxa related to the Nitrosomonas ureae clade. In one experiment this increase was sufficient to cause an increase in the overall abundance of AOB. There were no systematic shifts in the community structure or abundance of AOA in either experiment. These different responses to acidification underscore the important role of microbial community structure in the resiliency of marine ecosystems. SUBMITTER_CITATION: Title: Acidification alters the composition of ammonia oxidizing microbial assemblages in marine mesocosms Journal: Marine Ecology Progress Series Issue: 492 Pages: 1-8 DOI: 10.3354/meps 10526 Authors: Jennifer L Bowen Patrick J Kearns Michael Holcomb Bess B Ward
Project description:Marine microalgae (phytoplankton) mediate almost half of the worldwide photosynthetic carbon dioxide fixation and therefore play a pivotal role in global carbon cycling, most prominently during massive phytoplankton blooms. Phytoplankton biomass consists of considerable proportions of polysaccharides, substantial parts of which are rapidly remineralized by heterotrophic bacteria. We analyzed the diversity, activity and functional potential of such polysaccharide-degrading bacteria in different size fractions during a diverse spring phytoplankton bloom at Helgoland Roads (southern North Sea) at high temporal resolution using microscopic, physicochemical, biodiversity, metagenome and metaproteome analyses.
Project description:Increasing atmospheric CO2 concentrations are causing decreased pH over vast expanses of the ocean. This decreasing pH may alter biogeochemical cycling of carbon and nitrogen via the microbial process of nitrification, a key process that couples these cycles in the ocean, but which is often sensitive to acidic conditions. Recent reports indicate a decrease in oceanic nitrification rates under experimentally lowered pH. How composition and abundance of ammonia oxidizing bacteria (AOB) and archaea (AOA) assemblages respond to decreasing oceanic pH, however, is unknown. We sampled microbes from two different acidification experiments and used a combination of qPCR and functional gene microarrays for the ammonia monooxygenase gene (amoA) to assess how acidification alters the structure of ammonia oxidizer assemblages. We show that despite widely different experimental conditions, acidification consistently altered the community composition of AOB by increasing the relative abundance of taxa related to the Nitrosomonas ureae clade. In one experiment this increase was sufficient to cause an increase in the overall abundance of AOB. There were no systematic shifts in the community structure or abundance of AOA in either experiment. These different responses to acidification underscore the important role of microbial community structure in the resiliency of marine ecosystems. amoA gene diversity from two ocean acidification experiments, Monterey Bay experiment (two time points, ambient and acidified) and Vineyard Sound experiment (ambient and acifidied, with and without nutrients) examined with 2 two-color arrays (Cy3 and Cy5): the universal standard 20-mer oligo is printed to the slide with a 70-mer oligo (an archetype). Environmental DNA sequences (fluoresced with Cy3) within 15% of the 70-mer conjugated to a 20-mer oligo (fluoresced with Cy5) complementary to the universal standard will bind to the oligo probes on the array. Signal is the ratio of Cy3 to Cy5.
Project description:The polysaccharide β-mannan, which is common in terrestrial plants but unknown in microalgae, was recently detected during diatom blooms. We identified a β-mannan polysaccharide utilization locus (PUL) in the genome of the marine Flavobacterium Muricauda sp. MAR_2010_75 which resembles PULs in bacteria from diverse ecosystems. Proteomics showed the β-mannan induced translation of 22 proteins encoded within the PUL.
Project description:Marine phytoplankton produce ~109 tons of dimethylsulfoniopropionate (DMSP) per year, an estimated 10% of which is catabolized by bacteria through the DMSP cleavage pathway to the climatically active gas dimethyl sulfide (DMS). SAR11 Alphaproteobacteria (order Pelagibacterales), the most abundant chemoorganotrophic bacteria in the oceans, have been shown to assimilate DMSP into biomass, thereby supplying this cell’s unusual requirement for reduced sulfur. Here we report that Pelagibacter HTCC1062 produces the gas methanethiol (MeSH) and that simultaneously a second DMSP catabolic pathway, mediated by a DMSP lyase, shunts as much as 59% of DMSP uptake to DMS production. We propose a model in which the allocation of DMSP between these pathways is kinetically controlled to release DMS when the supply of DMSP exceeds cellular sulfur demands for biosynthesis. These findings suggest that DMSP supply and demand relationships can significantly control rates of oceanic DMS production.