Project description:Here, we employed integrated chemical and biological analyses to determine how environmental mixtures affected biological responses in watersheds with different landuse. Adult male fathead minnows (Pimephales promelas) were exposed to water from different locations within the Shenandoah River watershed (VA, USA) in 2014, 2015, and 2016. The exposure locations were chosen to capture unique landuse in surrounding watersheds, including agricultural, municipal, mixed-use, and forested sites. Gene expression profiles were measured in livers of male fish exposed for 7 days using Agilent 60K custom FHM microarrays.
Project description:Here, we employed integrated chemical and biological analyses to determine how environmental mixtures affected biological responses in watersheds with different landuse. Adult male fathead minnows (Pimephales promelas) were exposed to water from different locations within the Shenandoah River watershed (VA, USA) in 2014, 2015, and 2016. The exposure locations were chosen to capture unique landuse in surrounding watersheds, including agricultural, municipal, mixed-use, and forested sites. Gene expression profiles were measured in livers of male fish exposed for 7 days using Agilent 60K custom FHM microarrays.
Project description:Here, we employed integrated chemical and biological analyses to determine how environmental mixtures affected biological responses in watersheds with different landuse. Adult male fathead minnows (Pimephales promelas) were exposed to water from different locations within the Shenandoah River watershed (VA, USA) in 2014, 2015, and 2016. The exposure locations were chosen to capture unique landuse in surrounding watersheds, including agricultural, municipal, mixed-use, and forested sites. Gene expression profiles were measured in livers of male fish exposed for 7 days using Agilent 60K custom FHM microarrays.
Project description:Xiangjiang River (Hunan, China) has been contaminated with heavy metal for several decades by surrounding factories. However, little is known about the influence of a gradient of heavy metal contamination on the diversity, structure of microbial functional gene in sediment. To deeply understand the impact of heavy metal contamination on microbial community, a comprehensive functional gene array (GeoChip 5.0) has been used to study the functional genes structure, composition, diversity and metabolic potential of microbial community from three heavy metal polluted sites of Xiangjiang River.
Project description:Xiangjiang River (Hunan, China) has been contaminated with heavy metal for several decades by surrounding factories. However, little is known about the influence of a gradient of heavy metal contamination on the diversity, structure of microbial functional gene in sediment. To deeply understand the impact of heavy metal contamination on microbial community, a comprehensive functional gene array (GeoChip 5.0) has been used to study the functional genes structure, composition, diversity and metabolic potential of microbial community from three heavy metal polluted sites of Xiangjiang River. Three groups of samples, A, B and C. Every group has 3 replicates.