Project description:Three independent replicates of 4 groups of immature (19/20 days of age) Alpk:APfCD-1 mice were treated with arachis oil (AO) vehicle, 2.5ug/kg 17beta-estradiol (E2), 2ug/kg diethylstilbestrol (DES), or 50mg/kg genistein (GEN), via 3 daily subcutaneous injection, and sacrificed 72hr after initial dose. Keywords: other
Project description:The ovarian hormones estrogen and progesterone orchestrate the transcriptional programs required to direct functions of the uterus for initiation and maintenance of pregnancy. Estrogen, acting via estrogen receptor alpha (ERα), regulates gene expression by activating and repressing distinct genes involved in signaling pathways that regulate cellular and physiological responses including cell division, water influx, and immune cell recruitment. Historically, these transcriptional responses have been postulated to reflect a biphasic physiological response. In this study, we explored the transcriptional responses of the ovariectomized mouse uterus to 17β-estradiol (E2) by RNA-seq to obtain global expression profiles of protein coding transcripts (mRNAs) and long noncoding RNAs (lncRNAs) following 0.5, 1, 2 and 6 hours of treatment. The E2-regulated mRNA and lncRNA expression profiles in the mouse uterus indicate an association between lncRNAs and mRNAs that regulate E2-driven pathways and reproductive phenotypes in the mouse. The transient E2-regulated transcriptome is reflected in the time-dependent shifting of biological processes regulated in the uterus in response to E2. Moreover, high expression of some conserved lncRNAs that are E2-regulated in the mouse uterus are predictive of low overall survival in endometrial carcinoma patients (e.g., H19, KCNQ1OT1, MIR17HG, and FTX). Collectively, this study (1) describes a genomic approach for identifying E2-regulated lncRNAs that may serve critical function in the uterus and (2) provides new insights into our understanding of the regulation of hormone-regulated transcriptional responses with implications in pregnancy and endometrial pathologies.
Project description:Developmental exposure to diethylstilbestrol (DES) causes reproductive tract malformations, affects fertility and increases the risk of clear cell carcinoma of the vagina and cervix in humans. Previous studies on a well-established mouse DES model demonstrated that it recapitulates many features of the human syndrome, yet the underlying molecular mechanism is far from clear. Using the neonatal DES mouse model, the present study uses global transcript profiling to systematically explore early gene expression changes in individual epithelial and mesenchymal compartments of the neonatal uterus. Over 900 genes show differential expression upon DES treatment in either one or both tissue layers. Interestingly, multiple components of the Peroxisome Proliferator-Activated Receptor gamma (PPAR gamma)-mediated adipogenic/lipid metabolic pathway, including PPARgamma itself, are targets of DES in the neonatal uterus. TEM and Oil Red O staining further demonstrate a dramatic increase in lipid deposition in the uterine epithelial cells upon DES exposure. Neonatal DES exposure also perturbs glucose homeostasis in the uterine epithelium. Some of these neonatal DES-induced metabolic changes appear to last into adulthood, suggesting a permanent effect of DES on energy metabolism in uterine epithelial cells. This study extends the list of biological processes that can be regulated by estrogen or DES, and provides a novel perspective for endocrine disruptor induced reproductive abnormalities.
Project description:Three independent replicates of 4 groups of immature (19/20 days of age) Alpk:APfCD-1 mice were treated with arachis oil (AO) vehicle, 2.5ug/kg 17beta-estradiol (E2), 2ug/kg diethylstilbestrol (DES), or 50mg/kg genistein (GEN), via 3 daily subcutaneous injection, and sacrificed 72hr after initial dose.
Project description:Transcriptional responses in ovariectomized mouse uterine tissue to estradiol (E2) and diethylstilbestrol (DES), known long-acting estrogens, and propyl pyrazole triol (PPT), an ER-alpha selective estrogen, were profiled. Profiles were used together with those from other estrogens to derive a biomarker panel.
Project description:Developmental exposure to diethylstilbestrol (DES) causes reproductive tract malformations, affects fertility and increases the risk of clear cell carcinoma of the vagina and cervix in humans. Previous studies on a well-established mouse DES model demonstrated that it recapitulates many features of the human syndrome, yet the underlying molecular mechanism is far from clear. Using the neonatal DES mouse model, the present study uses global transcript profiling to systematically explore early gene expression changes in individual epithelial and mesenchymal compartments of the neonatal uterus. Over 900 genes show differential expression upon DES treatment in either one or both tissue layers. Interestingly, multiple components of the Peroxisome Proliferator-Activated Receptor gamma (PPAR gamma)-mediated adipogenic/lipid metabolic pathway, including PPARgamma itself, are targets of DES in the neonatal uterus. TEM and Oil Red O staining further demonstrate a dramatic increase in lipid deposition in the uterine epithelial cells upon DES exposure. Neonatal DES exposure also perturbs glucose homeostasis in the uterine epithelium. Some of these neonatal DES-induced metabolic changes appear to last into adulthood, suggesting a permanent effect of DES on energy metabolism in uterine epithelial cells. This study extends the list of biological processes that can be regulated by estrogen or DES, and provides a novel perspective for endocrine disruptor induced reproductive abnormalities. We separated UE from the UM from vehicle (oil)- or DES-treated postnatal day 5 (P5) mice, and prepared biological triplicates of RNA from pooled specimens (nM-bM-^IM-%3). Those samples were analyzed on two MouseWG-6 BeadChips, which detects 45,200 transcripts including more than 26,000 annotated genes in the NCBI RefSeq database. Difference of at least twofold in signal intensity of each given probe set with a P-value less than 0.05 was considered statistically significant.
Project description:To obtain an integrated view of gene regulation in response to environmental and endogenous estrogens on a genome-wide scale, we performed ChIP-seq, to identify estrogen receptor 1 (ER) binding sites, and RNA-seq in endometrial cancer cells exposed to bisphenol A (BPA; found in plastics), genistein (GEN; found in soybean), or 17β-estradiol (E2; an endogenous estrogen). GEN and BPA treatment induces thousands of ER binding sites and >50 gene expression changes, representing a subset of E2‑induced gene regulation changes. Genes affected by E2 were highly enriched for ribosome-associated proteins; however, GEN and BPA failed to regulate most ribosome-associated proteins and instead enriched for transporters of carboxylic acids. Treatment-dependent changes in gene expression were associated with treatment-dependent ER binding sites, with the exception that many genes up-regulated by E2 harbored a BPA-induced ER binding site, but failed to show any expression change after BPA treatment. GEN and BPA exhibited a similar relationship to E2 in the breast cancer line T-47D, where cell type specificity played a much larger role than treatment specificity. Overall, both environmental estrogens clearly regulate gene expression through ER on a genome-wide scale, although with lower potency resulting in less ER binding sites and less gene expression changes compared to the endogenous estrogen, E2.
Project description:To obtain an integrated view of gene regulation in response to environmental and endogenous estrogens on a genome-wide scale, we performed ChIP-seq, to identify estrogen receptor 1 (ER) binding sites, and RNA-seq in endometrial cancer cells exposed to bisphenol A (BPA; found in plastics), genistein (GEN; found in soybean), or 17β-estradiol (E2; an endogenous estrogen). GEN and BPA treatment induces thousands of ER binding sites and >50 gene expression changes, representing a subset of E2‑induced gene regulation changes. Genes affected by E2 were highly enriched for ribosome-associated proteins; however, GEN and BPA failed to regulate most ribosome-associated proteins and instead enriched for transporters of carboxylic acids. Treatment-dependent changes in gene expression were associated with treatment-dependent ER binding sites, with the exception that many genes up-regulated by E2 harbored a BPA-induced ER binding site, but failed to show any expression change after BPA treatment. GEN and BPA exhibited a similar relationship to E2 in the breast cancer line T-47D, where cell type specificity played a much larger role than treatment specificity. Overall, both environmental estrogens clearly regulate gene expression through ER on a genome-wide scale, although with lower potency resulting in less ER binding sites and less gene expression changes compared to the endogenous estrogen, E2. RNA-seq of human cancer cell lines treated with estradiol, bisphenol A, genistein or DMSO (control)