Project description:To characterize the site-specific methylation landscape of the Mandarin fish ranavirus (MRV) genome, whole-genome bisulfite sequencing (WGBS) was conducted on an isolated MRV strain.
Project description:Mandarin fish Siniperca chuatsi (Basilewsky) (Percichthyidae), as a demersal piscivore, has very specialized feeding habits, for as soon as they start feeding the fry of this fish feed solely on fry of other fish species. In rearing conditions, mandarin fish has been found to accept live prey fish only, and refuse dead prey fish or artificial diets, very little is currently known about the molecular mechanisms of multiple genes which cover different pathways influencing the specialized food habit, such as live prey. We performed transcriptome comparisons between dead prey fish feeders and nonfeeders in mandarin fish. The determination mechanisms of specialized food habit (live prey fish) in mandarin fish could provide some instructions for research of food habit in animals, including mammals.
Project description:Aim: We aim to compare current (MeDIP-seq), new (Illumina Infinium 450K BeadChip) and future (PacBio) methods for whole genome DNA methylation analysis. As the interest in determination of disease methylation profiles increases, the scope, advantages and limitations of these methods requires assessment. There are key questions to answer and specific challenges to overcome. For example, how much detail/resolution is sufficient to identify regions of differential methylation and regions of biological/medical significance within a sample? How much coverage of the genome is required for accurate methylation analysis? Is it important to confirm which regions of the genome are unmethylated in addition to focusing on those that are methylated? Loss of methylation may be of equal importance within the cell since this may also contribute to disease pathogenesis. A multi-method (affinity enrichment/bisulphite-conversion based/direct sequencing of methyl-cytosine) and technology platform (Illumina HiSeq/PacBio/Illumina Infinium BeadChip) comparison will enable us to determine the strengths and weakness of each method. We propose to compare four methods using two DNA samples from the Coriell Institute for Cell Repository to assess both current and future capabilities for whole genome methylation analysis in parallel: A) MeDIP-seq using Illumina HiSeq B) Illumina Infinium HumanMethylation 450K BeadChip and C) whole genome methylation sequencing using PacBio. Existing single molecule deep bisulphite sequencing data generated previously from these same samples at the WTSI for targeted regions (30-40 genes) on the human X chromosome will be used to assess performance of each method. The methods selected for this study will generate data covering a range of resolutions from a whole genome scan to array (target defined) resolution and up to single base pair, single molecule resolution; the highest level of detail possible with methods currently available.Samples: DNA from sibling pair GM01240 (female) and GM01240 (male).Requirements: Both samples will be analysed using;A.MeDIP-seq using Illumina HiSeq (one HiSeq lane, 75bp paired end, per sample) B.Illumina Infinium HumanMethylation 450K BeadChipWe are expecting a potentially unnecessary high coverage using one HiSeq lane per sample. However, for the MeDIP procedure we do not have a multiplexing procedure in place. Our requirements for PacBio sequencing have been discussed with and will be supported by the Sequencing Technology Development group.