Project description:This project aims to investigate the metabolic pathways expressed by the active microbial community occurring at the deep continental subsurface. Subsurface chemoLithoautotrophic Microbial Ecosystems (SLiMEs) under oligotrophic conditions are supported by H2; however, the overall ecological trophic structures of these communities are poorly understood. Some deep, fluid-filled fractures in the Witwatersrand Basin, South Africa appear to support inverted trophic pyramids wherein methanogens contributing <5% of the total DNA apparently produce CH4 that supports the rest of the community. Here we show the active metabolic relationships of one such trophic structure by combining metatranscriptomic assemblies, metaproteomic and stable isotopic data, and thermodynamic modeling. Four autotrophic β-proteobacteria genera that are capable of oxidizing sulfur by denitrification dominate. They co-occur with sulfate reducers, anaerobic methane oxidizers and methanogens, which each comprises <5% of the total community. Defining trophic levels of microbial chemolithoautotrophs by the number of transfers from the initial abiotic H2-driven CO2 fixation, we propose a top-down cascade influence of the metabolic consumers that enhances the fitness of the metabolic producers to explain the inverted biomass pyramid of a multitrophic SLiME. Symbiotic partnerships are pivotal in the deep biosphere on and potentially beyond the Earth.
Project description:The Baltic Sea is one of the largest brackish water bodies in the world. Redoxclines that form between oxic and anoxic layers in the deepest sub-basins are a semi-permanent character of the pelagic Baltic Sea. The microbially mediated nitrogen removal processes in these redoxclines have been recognized as important ecosystem service that removes large proportion of the nitrogen load originating from the drainage basin. However, nitrification, which links mineralization of organic nitrogen and nitrogen removal processes, has remained poorly understood. To gain better understanding of the nitrogen cycling in the Baltic Sea, we analyzed the assemblage of ammonia oxidizing bacteria and archaea in the central Baltic Sea using functional gene microarrays and measured the biogeochemical properties along with potential nitrification rates. Overall, the ammonia oxidizer communities in the Baltic Sea redoxcline were very evenly distributed. However, the communities were clearly different between the eastern and western Gotland Basin and the correlations between different components of the ammonia oxidizer assemblages and environmental variables suggest ecological basis for the community composition. The more even community ammonia oxidizer composition in the eastern Gotland Basin may be related to the constantly oscillating redoxcline that does not allow domination of single archetype. The oscillating redoxcline also creates long depth range of optimal nitrification conditions. The rate measurements suggest that nitrification in the central Baltic Sea is able to produce all nitrate required by denitrification occurring below the nitrification zone.
2013-08-24 | GSE50164 | GEO
Project description:Sediment microbial sequencing of Lake Hulun
Project description:The Baltic Sea is one of the largest brackish water bodies in the world. Redoxclines that form between oxic and anoxic layers in the deepest sub-basins are a semi-permanent character of the pelagic Baltic Sea. The microbially mediated nitrogen removal processes in these redoxclines have been recognized as important ecosystem service that removes large proportion of the nitrogen load originating from the drainage basin. However, nitrification, which links mineralization of organic nitrogen and nitrogen removal processes, has remained poorly understood. To gain better understanding of the nitrogen cycling in the Baltic Sea, we analyzed the assemblage of ammonia oxidizing bacteria and archaea in the central Baltic Sea using functional gene microarrays and measured the biogeochemical properties along with potential nitrification rates. Overall, the ammonia oxidizer communities in the Baltic Sea redoxcline were very evenly distributed. However, the communities were clearly different between the eastern and western Gotland Basin and the correlations between different components of the ammonia oxidizer assemblages and environmental variables suggest ecological basis for the community composition. The more even community ammonia oxidizer composition in the eastern Gotland Basin may be related to the constantly oscillating redoxcline that does not allow domination of single archetype. The oscillating redoxcline also creates long depth range of optimal nitrification conditions. The rate measurements suggest that nitrification in the central Baltic Sea is able to produce all nitrate required by denitrification occurring below the nitrification zone. Two color array (Cy3 and Cy5): the universal standard 20-mer oligo is printed to the slide with a 70-mer oligo (an archetype). Environmental DNA sequences (fluoresced with Cy3) within 15% of the 70-mer conjugated to a 20-mer oligo (fluoresced with Cy5) complementary to the universal standard will bind to the oligo probes on the array. Signal is the ratio of Cy3 to Cy5. Three replicate probes were printed for each archetype. Two replicate arrays were run on duplicate targets.
Project description:We developed a laboratory-scale model to improve our understanding and capacity to assess the biological risks of genetically engineered bacteria and their genetic elements in the natural environment. Our hypothetical scenario concerns an industrial bioreactor failure resulting in the introduction of genetically engineered bacteria to a downstream municipal wastewater treatment plant (MWWTP). As the first step towards developing a model for this scenario, we sampled microbial communities from the aeration basin of a MWWTP at three seasonal time points. Having established a baseline for community composition, we investigated how the community changed when propagated in the laboratory, including cell culture media conditions that could provide selective pressure in future studies. Specifically, using PhyloChip 16S rRNA gene-targeting microarrays, we compared the compositions of sampled communities to those of inoculates propagated in the laboratory in simulated wastewater conditionally amended with various carbon sources (glucose, chloroacetate, D-threonine) or the ionic liquid 1-ethyl-3-methylimidazolium chloride ([C2mim]Cl). Proteobacteria, Bacteroidetes, and Actinobacteria were predominant in aeration basin and laboratory-cultured populations. Laboratory-cultured populations were enriched in Gammaproteobacteria. Enterobacteriaceae and Aeromonadaceae were enriched by glucose, Pseudomonadaceae by chloroacetate and D-threonine, and Burkholderiaceae by high (50 mM) concentrations of chloroacetate. Microbial populations cultured with chloroacetate and D-threonine were more similar to sampled populations than thoes cultured with glucose or [C2mim]Cl. Although observed relative richness in operational taxonomic units was lower for laboratory cultures than for sampled populations, both flask and reactor systems cultured phylogenetically diverse communities. These results importantly provide a foundation for laboratory models of industrial bioreactor failure scenarios. 46 samples, flask and reactor experiments were conducted in triplicate with two exceptions: [C2mim]Cl_flask and No-Carbon_flask treatments had only one sample (no replicates).
Project description:We developed a laboratory-scale model to improve our understanding and capacity to assess the biological risks of genetically engineered bacteria and their genetic elements in the natural environment. Our hypothetical scenario concerns an industrial bioreactor failure resulting in the introduction of genetically engineered bacteria to a downstream municipal wastewater treatment plant (MWWTP). As the first step towards developing a model for this scenario, we sampled microbial communities from the aeration basin of a MWWTP at three seasonal time points. Having established a baseline for community composition, we investigated how the community changed when propagated in the laboratory, including cell culture media conditions that could provide selective pressure in future studies. Specifically, using PhyloChip 16S rRNA gene-targeting microarrays, we compared the compositions of sampled communities to those of inoculates propagated in the laboratory in simulated wastewater conditionally amended with various carbon sources (glucose, chloroacetate, D-threonine) or the ionic liquid 1-ethyl-3-methylimidazolium chloride ([C2mim]Cl). Proteobacteria, Bacteroidetes, and Actinobacteria were predominant in aeration basin and laboratory-cultured populations. Laboratory-cultured populations were enriched in Gammaproteobacteria. Enterobacteriaceae and Aeromonadaceae were enriched by glucose, Pseudomonadaceae by chloroacetate and D-threonine, and Burkholderiaceae by high (50 mM) concentrations of chloroacetate. Microbial populations cultured with chloroacetate and D-threonine were more similar to sampled populations than thoes cultured with glucose or [C2mim]Cl. Although observed relative richness in operational taxonomic units was lower for laboratory cultures than for sampled populations, both flask and reactor systems cultured phylogenetically diverse communities. These results importantly provide a foundation for laboratory models of industrial bioreactor failure scenarios.
Project description:At hydrothermal vent sites, chimneys consisting of sulfides, sulfates, and oxides are formed upon contact of reduced hydrothermal fluids with oxygenated seawater. The walls and surfaces of these chimneys are an important habitat for vent-associated microorganisms. We used community proteogenomics to investigate and compare the composition and in situ protein expression of microbial communities colonizing two actively venting hydrothermal chimneys from the Manus Basin back-arc spreading center (Papua New Guinea).
Project description:Coastal marine sediments, as locations of substantial fixed nitrogen loss, are very important to the nitrogen budget and to the primary productivity of the oceans. Coastal sediment systems are also highly dynamic and subject to periodic natural and anthropogenic organic substrate additions. The response to organic matter by the microbial community involved in nitrogen loss processes was evaluated using mesocosms of Chesapeake Bay sediments. Over the course of a 50-day incubation, rates of anammox and denitrification were measured weekly using 15N tracer incubations, and samples were collected for genetic analysis. Rates of both nitrogen loss processes and gene abundances associated with them corresponded loosely, probably because heterogeneities in sediments obscured a clear relationship. The rates of denitrification were stimulated more by the higher organic matter addition, and the fraction of nitrogen loss attributed to anammox slightly reduced. Furthermore, the large organic matter pulse drove a significant and rapid shift in the denitrifier community as determined using a nirS microarray, indicating the diversity of these organisms plays an essential role in responding to anthropogenic inputs. We also suggest that the proportion of nitrogen loss due to anammox in these coastal estuarine sediments may be underestimated due to temporal dynamics as well as from methodological artifacts related to conventional sediment slurry incubation approaches.
Project description:Bio-augmentation could be a promising strategy to improve processes for treatment and resource recovery from wastewater. In this study, the Gram-positive bacterium Bacillus subtilis was co-cultured with the microbial communities present in wastewater samples with high concentrations of nitrate or ammonium. Glucose supplementation (1%) was used to boost biomass growth in all wastewater samples. In anaerobic conditions, the indigenous microbial community bio-augmented with B. subtilis was able to rapidly remove nitrate from wastewater. In these conditions, B. subtilis overexpressed nitrogen assimilatory and respiratory genes including NasD, NasE, NarG, NarH, and NarI, which arguably accounted for the observed boost in denitrification. Next, we attempted to use the the ammonium- and nitrate-enriched wastewater samples bio-augmented with B. subtilis in the cathodic compartment of bioelectrochemical systems (BES) operated in anaerobic condition. B. subtilis only had low relative abundance in the microbial community, but bio-augmentation promoted the growth of Clostridium butyricum and C. beijerinckii, which became the dominant species. Both bio-augmentation with B. subtilis and electrical current from the cathode in the BES promoted butyrate production during fermentation of glucose. A concentration of 3.4 g/L butyrate was reached with a combination of cathodic current and bio-augmentation in ammonium-enriched wastewater. With nitrate-enriched wastewater, the BES effectively removed nitrate reaching 3.2 mg/L after 48 h. In addition, 3.9 g/L butyrate was produced. We propose that bio-augmentation of wastewater with B. subtilis in combination with bioelectrochemical processes could both boost denitrification in nitrate-containing wastewater and enable commercial production of butyrate from carbohydrate- containing wastewater, e.g. dairy industry discharges. These results suggest that B. subtilis bio-augmentation in our BES promotes simultaneous wastewater treatment and butyrate production.