ABSTRACT: Seasonal linkages between soil nitrogen mineralization and microbial community in broadleaf forests with Moso bamboo (Phyllostachys edulis) invasion
Project description:Moso bamboo (Phyllostachys edulis (Carrière) J. Houz.), ) is one of the most importantessential economic bamboo species in China. However, the woods quality and yield of bamboo shoots were significantly threatened by diverse environmental conditions. significantly threaten the quality of wood and yield of bamboo shoots. In this study, to explore the molecular mechanism of abiotic stress response, we report the RNA-seq analyses of mosoMoso bamboo treated with drought, salt, SA and ABA at three -time courses. A total of 224.4 Gb clean data were generate in to explore the molecular mechanism of the abiotic stress response. The full-length transcriptome sequencing of these four treatments generated a total of 224.4 Gb data after quality trimming, and approximately 5.83Gban average of 6.615 Gb clean data were per sample was generated in per sample. The comparative analyses of the generated transcriptome data in this study will provide a valuable resource for identifying regulatory genes and potential pathways involved in various abiotic stresses in mosoMoso bamboo.
Project description:Bamboo represents the only major lineage of grasses that is native to forests and is one of the most important non-timber forest products in the world. Moso bamboo is a large woody bamboo that has ecological, economic and cultural value in Asia and accounts for ~70% of the total bamboo growth area (Peng et al., 2013). In the aspect of epigenetics of Moso bamboo,the total genomic DNA methylation rates in Moso bamboo at different chronological ages were significantly different (Yuan et al., 2014). Those show that the flowering of Moso bamboo are closely related to epigenetic modification. However, DNA methylation in single base resolution has never been reported in moso bamboo. In this study, leaves from three-week bamboo, one-year bamboo, flower in next year bamboo, flowering bamboo and Flower florets was used for bisulfite sequencing (BS-seq), and RNA-Seq. Genome-wide methylation profile and gene expression analysis were constructed to reveal the factors to regualte the phase transition from vegetative to reproductive growth in moso bamboo.
Project description:Bamboo represents the only major lineage of grasses that is native to forests and is one of the most important non-timber forest products in the world. Moso bamboo is a large woody bamboo that has ecological, economic and cultural value in Asia and accounts for ~70% of the total bamboo growth area (Peng et al., 2013). In the aspect of epigenetics of Moso bamboo,the total genomic DNA methylation rates in Moso bamboo at different chronological ages were significantly different (Yuan et al., 2014). Those show that the flowering of Moso bamboo are closely related to epigenetic modification. However, DNA methylation in single base resolution has never been reported in moso bamboo. In this study, leaves from three-week bamboo, one-year bamboo, flower in next year bamboo, flowering bamboo and Flower florets was used for bisulfite sequencing (BS-seq), and RNA-Seq. Genome-wide methylation profile and gene expression analysis were constructed to reveal the factors to regualte the phase transition from vegetative to reproductive growth in moso bamboo.
Project description:Moso bamboo (Phyllostachys edulis) represents one of the fastest-spreading plants in the world, due in part to their well-developed rhizomes system. However, the post-transcriptional regulation mechanism has not been comprehensively studied for the development of rhizome system in bamboo. We therefore used single-molecule long-read sequencing technology to re-annotate the bamboo genome, and genome-wide identify alternative splicing (AS) and alternative polyadenylation (APA) in the rhizomes system. In total, 145,522 mapped full-length non-chimeric (FLNC) reads were analyzed, resulting in the correction of 2,241 mis-annotated genes and identification of 8,091 previously unannotated loci. Markedly, more than 42,280 contiguous exon connectivity were derived from full-length splicing isoforms, including a large number of AS events that associated with rhizome systems. In addition, we characterized 25,069 polyadenylation sites from 11,450 genes, 6,311 of which have APA sites. Further analysis of intronic polyadenylation revealed that LTR/Gypsy and LTR/Copia were two major transposable elements (TEs) within the intronic polyadenylation region. Furthermore, this study provided a quantitative altas of poly(A) usage and identified several hundreds of differential poly(A) sites in rhizome-root system using a combination of polyadenylation site sequencing (PAS-seq) and PacBio reads. Taken together, these results suggest that posttranscriptional regulation may potentially play vital role in the underground rhizome-root system.
Project description:The small RNA libraries from Moso bamboo (Phyllostachy heterocycla) roots and leaves were constructed by using high definition adapters . The small RNA profiles were analyzed. A collection of micro RNAs with similarity to the micro RNA entries in mirbase were discovered. The putative genomic loci of the micro RNAs were identified. Analysis of small RNA profiles from the root and leaf tissues of young Moso Bamboo seedlings
Project description:Moso bamboo is a fast-growing bamboo species with high economic, social and cultural value. The method of transplanting moso bamboo seedlings for afforestation has become a more economical and effective method. The effect of light on the growth of plant seedlings is mainly reflected in the regulation of different light quality on the growth and development of seedlings, including light morphogenesis, photosynthesis and secondary metabolites. Therefore, studying the effects of specific wavelength light on the physiology and proteome of moso bamboo seedlings will play an important role in growing seedlings and seed cultivation of moso bamboo. Here, moso bamboo seeds were germinated in the dark and then were transferred to the blue and red-light conditions. After 14 days, we observed the effects of different light treatments on the growth and development of seedlings, and then compared and analyzed their proteome.
Project description:We adopted the high-throughput sequencing technology and compared the transcriptomes of Moso bamboo rhizome buds in germination stage and late development stage. We found that the development of Moso bamboo rhizome lateral buds was coordinated by multiple pathways, including meristem development, sugar metabolism and phytohormone signaling. Phytohormones have fundamental impacts on the plant development. We found the evidence of several major hormones participating in the development of Moso bamboo rhizome lateral bud. Furthermore, we showed direct evidence that Gibberellic Acids (GA) signaling participated in the Moso bamboo stem elongation.
Project description:Purpose:Bamboo shoots rapidly lose water and accumulate lignin when stored under room temperature, while low temperature conditioning (LTC, 4℃) can alleviate lignification and reduce weightlessness rate. However, few transcriptional response and profiling datasets are available to explore the LTC mechanism of bamboo shoots.The goal of this study is to provides insights into the regulation of Lei bamboo (Phyllostachys violascens) shoots during postharvest cold storage by transcriptome analysis. Methods:Total RNA was extracted using RNAiso Plus (Takara, Japan) according to the protocol, and after quality testing, was used for library construction and transcriptome sequencing by Illumina Novaseq™ 6000. The quality-controlled reads were aligned to the Phyllostachys edulis reference genome (http://gigadb.org/dataset/100498). The edgeR program25 was used for differential expression analyses. Results: After raw data filtering, a high clean data rate from each sample was achieved, and the assessment result for the clean data by FastQC all demonstrated that our sequencing data was of high quality, full representativeness and validity. Compared with CK, a total of 7,452 DEGs were identified during LT storage. The Pearson’s correlation coefficient (r) and principle component analysis (PCA) results all suggested a high correlation among all samples. The above results suggest an effective LT treatment of postharvest bamboo shoots and a high-quality bioinformatics analysis of our RNA-seq results. Conclusions: Our study represents the first detailed analysis of Lei bamboo (Phyllostachys violascens) shoots during postharvest cold storage transcriptomes, with biologic replicates, generated by RNA-seq technology. The optimized data analysis workflows reported here should provide a framework for comparative investigations of expression profiles. We conclude that RNA-seq based transcriptome characterization would reveal the essence of ripening and senescence of fruits and vegetables.