Project description:In the early stages (30 days) of phosphorus deficiency stress, Epimedium pubescens leaves cope with short-term phosphorus deficiency by increasing the expression of related genes such as carbon metabolism, flavonoid synthesis and hormone signal transduction pathways, producing sufficient energy, scavenging ROS, and adjusting plant morphology. However, with the extension of stress duration to 90 days, the expression of genes related to phosphorus cycling and phosphorus recovery (PHT1-4, PHO1 homolog3, PAP) was upregulated, and transcriptional changes and post-transcriptional regulation (miRNA regulation and protein modification) were enhanced to resist long-term phosphorus deficiency stress. In addition, bHLH, MYB, NAC, WRKY and other families also play an important role in regulating gene expression and coping with phosphorus deficiency stress, especially MYB60 negatively regulates flavonoid synthesis pathway, which is significantly down-regulated in leaves treated with phosphorus deficiency for 30 days, thereby promoting the accumulation of flavonoid compounds in leaves.
Project description:Phosphorus limitation is pervasive in the oligotrophic surface ocean and marine microorganisms use different strategies to survive, and thrive, at these low nutrient levels. Eukaryotic algae such as diatoms are extremely sensitive to phosphorus limitation and recent transcriptomics work has suggested that multiple cellular processes are affected under these growth conditions. Metabolomics is the systematic study of intra- and extracellular metabolites, i.e. the end products of microbial metabolism. As such, metabolomics complements genomics and transcriptomics through the identification and quantification of metabolic intermediates that reflect cellular physiology. Here, we applied intracellular metabolomics to examine the differential response of the model diatom Thalassiosira pseudonana to phosphate-replete and phosphate-limited growth conditions. We focused on metabolites from the purine and pyrimidine biochemical pathways, due to their role in phosphorus cycling associated with nucleic acid synthesis. Under phosphate-replete conditions, T. pseudonana stored nucleotides with phosphate moieties such as adenosine 5'-monophosphate (AMP) and, to a lesser extent, inosine 5'-monophosphate (IMP). In contrast, under phosphate-limited conditions, T. pseudonana had higher concentrations of adenine, inosine, and adenosine all of which lack phosphate moieties. Furthermore, based on previously published transcriptomics data, T. pseudonana differentially regulates select genes that can alter these nucleic acid precursors through the gain or loss of the phosphate moiety. Thus, our analysis of the metabolomics and transcriptomics data converged upon the sensitivity of the purine biochemical pathway to phosphorus availability.
Project description:In the early stages (30 days) of phosphorus deficiency stress, Epimedium pubescens leaves cope with short-term phosphorus deficiency by increasing the expression of related genes such as carbon metabolism, flavonoid synthesis and hormone signal transduction pathways, producing sufficient energy, scavenging ROS, and adjusting plant morphology. However, with the extension of stress duration to 90 days, the expression of genes related to phosphorus cycling and phosphorus recovery (PHT1-4, PHO1 homolog3, PAP) was upregulated, and transcriptional changes and post-transcriptional regulation (miRNA regulation and protein modification) were enhanced to resist long-term phosphorus deficiency stress. In addition, bHLH, MYB, NAC, WRKY and other families also play an important role in regulating gene expression and coping with phosphorus deficiency stress, especially MYB60 negatively regulates flavonoid synthesis pathway, which is significantly down-regulated in leaves treated with phosphorus deficiency for 30 days, thereby promoting the accumulation of flavonoid compounds in leaves.
Project description:Petroleum hydrocarbons are recalcitrant contaminants, which has caused most serious environmental problems. Acinetobacter calcoaceticus Aca13 was isolated from petroleum polluted soil for petroleum biodegradation. Hexadecane and naphthalene were used to incubate with Acinetobacter calcoaceticus Aca13. After incubation, the whole transcriptome was obtained from treated groups and control groups, and then used for RNA sequence and analysis. Obtained data in this project will help us understand the biodegradation mechanism of hexadecane and naphthalene, and will be helpful for the bioremediation of petroleum hydrocarbons.
Project description:Proteins secreted by marine cyanobacterium Synechococcus under phosphorus stress is largely uncharacterized. This dataset characterizes the exoproteins for both an open ocean (WH8102) and coastal (WH5701) Synechococcus strain and were collected as part of the study "Dissolved organic phosphorus bond-class utilization by Synechococcus". Study Abstract: Dissolved organic phosphorus (DOP) contains compounds with phosphoester (P-O-C), phosphoanhydride (P-O-P), and phosphorus-carbon (P-C) bonds. Despite DOP’s importance as a nutritional source for marine microorganisms, the bioavailability of each bond-class to the widespread cyanobacterium Synechococcus remains largely unknown. This study evaluates bond-class specific DOP utilization by cultures of an open ocean and a coastal ocean Synechococcus strain. Both strains exhibited comparable growth rates when provided phosphate, short-chain and long-chain polyphosphate (P-O-P), adenosine 5’-triphosphate (P-O-C and P-O-P), and glucose-6-phosphate (P-O-C) as the phosphorus source. However, growth rates on phosphomonoester adenosine 5’-monophosphate (P-O-C) and phosphodiester bis(4-methylumbelliferyl) phosphate (C-O-P-O-C) varied between strains, and neither strain grew on selected phosphonates. Consistent with the growth measurements, both strains preferentially hydrolyzed 3-polyphosphate, followed by adenosine 5’-triphosphate, and then adenosine 5’-monophosphate. The strains’ exoproteome contained phosphorus hydrolases, which combined with enhanced cell-free hydrolysis of 3-polyphosphate and adenosine 5’-triphosphate under phosphate deficiency, suggests active mineralization of short-chain polyphosphate by Synechococcus’ exoproteins. Synechococcus alkaline phosphatases presented broad substrate specificities, including activity towards short-chain polyphosphate, with varying affinities between the two strains. Collectively, these findings underscore the potentially significant role of compounds with phosphoanhydride bonds in Synechococcus phosphorus nutrition, thereby expanding our understanding of microbially-mediated DOP cycling in marine ecosystems.
2024-07-15 | PXD051991 | Pride
Project description:Effects of Chlortetracycline Addition on Phosphorus Transformation and Availability Mediated by Phosphorus Cycling Microorganisms in Organic Fertilized Soil