Project description:In the early stages (30 days) of phosphorus deficiency stress, Epimedium pubescens leaves cope with short-term phosphorus deficiency by increasing the expression of related genes such as carbon metabolism, flavonoid synthesis and hormone signal transduction pathways, producing sufficient energy, scavenging ROS, and adjusting plant morphology. However, with the extension of stress duration to 90 days, the expression of genes related to phosphorus cycling and phosphorus recovery (PHT1-4, PHO1 homolog3, PAP) was upregulated, and transcriptional changes and post-transcriptional regulation (miRNA regulation and protein modification) were enhanced to resist long-term phosphorus deficiency stress. In addition, bHLH, MYB, NAC, WRKY and other families also play an important role in regulating gene expression and coping with phosphorus deficiency stress, especially MYB60 negatively regulates flavonoid synthesis pathway, which is significantly down-regulated in leaves treated with phosphorus deficiency for 30 days, thereby promoting the accumulation of flavonoid compounds in leaves.
Project description:In the early stages (30 days) of phosphorus deficiency stress, Epimedium pubescens leaves cope with short-term phosphorus deficiency by increasing the expression of related genes such as carbon metabolism, flavonoid synthesis and hormone signal transduction pathways, producing sufficient energy, scavenging ROS, and adjusting plant morphology. However, with the extension of stress duration to 90 days, the expression of genes related to phosphorus cycling and phosphorus recovery (PHT1-4, PHO1 homolog3, PAP) was upregulated, and transcriptional changes and post-transcriptional regulation (miRNA regulation and protein modification) were enhanced to resist long-term phosphorus deficiency stress. In addition, bHLH, MYB, NAC, WRKY and other families also play an important role in regulating gene expression and coping with phosphorus deficiency stress, especially MYB60 negatively regulates flavonoid synthesis pathway, which is significantly down-regulated in leaves treated with phosphorus deficiency for 30 days, thereby promoting the accumulation of flavonoid compounds in leaves.
Project description:Understanding microbial community diversity is thought to be crucial for improving process functioning and stabilities of wastewater treatment systems. However, current studies largely focus on taxonomic groups based on 16S rRNA, which are not necessarily linked to functioning, or a few selected functional genes. Here we launched a study to profile the overall functional genes of microbial communities in three full-scale wastewater treatment systems. Triplicate activated sludge samples from each system were analyzed using a high-throughput metagenomics tool named GeoChip 4.2, resulting in the detection of 38,507 to 40,647 functional genes. A high similarity of 75.5% to 79.7% shared genes was noted among the nine samples. Moreover, correlation analyses showed that the abundances of a wide array of functional genes were associated with system performances. For example, the abundances of overall nitrogen cycling genes had a strong correlation to total nitrogen (TN) removal rates (r = 0.7647, P < 0.01). The abundances of overall carbon cycling genes were moderately correlated with COD removal rates (r = 0.6515, P < 0.01). Lastly, we found that influent chemical oxygen demand (COD inf) and total phosphorus concentrations (TP inf), and dissolved oxygen (DO) concentrations were key environmental factors shaping the overall functional genes. Together, the results revealed vast functional gene diversity and some links between the functional gene compositions and microbe-mediated processes.
Project description:Aeolian soil erosion, exacerbated by anthropogenic perturbations, has become one of the most alarming processes of land degradation and desertification. By contrast, dust deposition might confer a potential fertilization effect. To examine how they affect topsoil microbial community, we conducted a study GeoChip techniques in a semiarid grassland of Inner Mongolia, China. We found that microbial communities were significantly (P<0.039) altered and most of microbial functional genes associated with carbon, nitrogen, phosphorus and potassium cycling were decreased or remained unaltered in relative abundance by both erosion and deposition, which might be attributed to acceleration of organic matter mineralization by the breakdown of aggregates during dust transport and deposition. As a result, there were strong correlations between microbial carbon and nitrogen cycling genes. amyA genes encoding alpha-amylases were significantly (P=0.01) increased by soil deposition, reflecting changes of carbon profiles. Consistently, plant abundance, total nitrogen and total organic carbon were correlated with functional gene composition, revealing the importance of environmental nutrients to soil microbial function potentials. Collectively, our results identified microbial indicator species and functional genes of aeolian soil transfer, and demonstrated that functional genes had higher susceptibility to environmental nutrients than taxonomy. Given the ecological importance of aeolian soil transfer, knowledge gained here are crucial for assessing microbe-mediated nutrient cyclings and human health hazard. The experimental sites comprised of three treatments of control, soil erosion and deposition, with 5 replicates of each treatment.
Project description:DNA samples of G. fascicularis were used to investigate the GeoChip 5.0 based functional gene arrays, which contains 57,000 probes and covered over 144,000 gene sequences from 393 functional gene families associated with a variety of microbial functional traits, such as carbon, nitrogen, phosphorus, sulfur cycling, pathogenicity and secondary metabolism.
Project description:Aeolian soil erosion, exacerbated by anthropogenic perturbations, has become one of the most alarming processes of land degradation and desertification. By contrast, dust deposition might confer a potential fertilization effect. To examine how they affect topsoil microbial community, we conducted a study GeoChip techniques in a semiarid grassland of Inner Mongolia, China. We found that microbial communities were significantly (P<0.039) altered and most of microbial functional genes associated with carbon, nitrogen, phosphorus and potassium cycling were decreased or remained unaltered in relative abundance by both erosion and deposition, which might be attributed to acceleration of organic matter mineralization by the breakdown of aggregates during dust transport and deposition. As a result, there were strong correlations between microbial carbon and nitrogen cycling genes. amyA genes encoding alpha-amylases were significantly (P=0.01) increased by soil deposition, reflecting changes of carbon profiles. Consistently, plant abundance, total nitrogen and total organic carbon were correlated with functional gene composition, revealing the importance of environmental nutrients to soil microbial function potentials. Collectively, our results identified microbial indicator species and functional genes of aeolian soil transfer, and demonstrated that functional genes had higher susceptibility to environmental nutrients than taxonomy. Given the ecological importance of aeolian soil transfer, knowledge gained here are crucial for assessing microbe-mediated nutrient cyclings and human health hazard.
Project description:Proteins secreted by marine cyanobacterium Synechococcus under phosphorus stress is largely uncharacterized. This dataset characterizes the exoproteins for both an open ocean (WH8102) and coastal (WH5701) Synechococcus strain and were collected as part of the study "Dissolved organic phosphorus bond-class utilization by Synechococcus". Study Abstract: Dissolved organic phosphorus (DOP) contains compounds with phosphoester (P-O-C), phosphoanhydride (P-O-P), and phosphorus-carbon (P-C) bonds. Despite DOP’s importance as a nutritional source for marine microorganisms, the bioavailability of each bond-class to the widespread cyanobacterium Synechococcus remains largely unknown. This study evaluates bond-class specific DOP utilization by cultures of an open ocean and a coastal ocean Synechococcus strain. Both strains exhibited comparable growth rates when provided phosphate, short-chain and long-chain polyphosphate (P-O-P), adenosine 5’-triphosphate (P-O-C and P-O-P), and glucose-6-phosphate (P-O-C) as the phosphorus source. However, growth rates on phosphomonoester adenosine 5’-monophosphate (P-O-C) and phosphodiester bis(4-methylumbelliferyl) phosphate (C-O-P-O-C) varied between strains, and neither strain grew on selected phosphonates. Consistent with the growth measurements, both strains preferentially hydrolyzed 3-polyphosphate, followed by adenosine 5’-triphosphate, and then adenosine 5’-monophosphate. The strains’ exoproteome contained phosphorus hydrolases, which combined with enhanced cell-free hydrolysis of 3-polyphosphate and adenosine 5’-triphosphate under phosphate deficiency, suggests active mineralization of short-chain polyphosphate by Synechococcus’ exoproteins. Synechococcus alkaline phosphatases presented broad substrate specificities, including activity towards short-chain polyphosphate, with varying affinities between the two strains. Collectively, these findings underscore the potentially significant role of compounds with phosphoanhydride bonds in Synechococcus phosphorus nutrition, thereby expanding our understanding of microbially-mediated DOP cycling in marine ecosystems.