Project description:Disease outbreaks due to the consumption of legume seedlings contaminated with human enteric bacterial pathogens like Escherichia coli O157:H7 and Salmonella enterica are reported every year. We found surface and internal colonization of Medicago truncatula by Salmonella enterica and Escherichia coli O157:H7 even with inoculum levels as low as two bacteria per plant. Expression analyses using microarray revealed that some Medicago truncatula genes were regulated in a similar manner in response to both of these enteric pathogens. Medicago truncatula roots were inoculated with low inoculum levels of two enteric bacteria per plant (E. coli O157:H7 and Salmonella). 10 days post inoculated plants were used for RNA extraction and hybridization on Affymetrix microarrays.
Project description:Disease outbreaks due to the consumption of legume seedlings contaminated with human enteric bacterial pathogens like Escherichia coli O157:H7 and Salmonella enterica are reported every year. We found surface and internal colonization of Medicago truncatula by Salmonella enterica and Escherichia coli O157:H7 even with inoculum levels as low as two bacteria per plant. Expression analyses using microarray revealed that some Medicago truncatula genes were regulated in a similar manner in response to both of these enteric pathogens.
Project description:The function of cvpA, a bacterial gene predicted to encode an inner membrane protein, is largely unknown. Early studies in E. coli linked cvpA to Colicin V secretion and recent work revealed that it is required for robust intestinal colonization by diverse enteric pathogens. In enterohemorrhagic E. coli (EHEC), cvpA is required for resistance to the bile salt deoxycholate (DOC). Here, we carried out genome-scale transposon-insertion mutagenesis and spontaneous suppressor analysis to uncover cvpA’s genetic interactions and identify common pathways that rescue the sensitivity of a ∆cvpA EHEC mutant to DOC. These screens demonstrated that mutations predicted to activate the σE-mediated extracytoplasmic stress response bypass the ∆cvpA mutant’s susceptibility to DOC. Consistent with this idea, we found that deletions in rseA and msbB and direct overexpression of rpoE restored DOC resistance to the ∆cvpA mutant. Analysis of the distribution of CvpA homologs revealed that this inner membrane protein is conserved across diverse bacterial phyla, in both enteric and non-enteric bacteria that are not exposed to bile. Together, our findings suggest that CvpA plays a role in cell envelope homeostasis in response to DOC and similar stress stimuli in diverse bacteria.
Project description:The rise of antibiotic resistance in many bacterial pathogens has been driven by the spread of a few successful strains, suggesting that some bacteria are genetically pre-disposed to evolving resistance. We tested this hypothesis by challenging a diverse set of 222 strains of Staphylococcus aureus with the antibiotic ciprofloxacin in a large-scale evolution experiment. Surprisingly, we found that a single efflux pump, norA, causes widespread variation in evolvability across the diversity of S. aureus. In most lineages of S. aureus, elevated norA expression potentiated evolution by increasing the fitness benefit provided by resistance mutations in DNA topoisomerase under ciprofloxacin treatment. Amplification of norA provided a further mechanism of rapid evolution, but this was restricted to strains from CC398. Crucially, chemically inhibiting NorA effectively prevented the evolution of resistance across the diversity of S. aureus. Our study shows that the underlying genetic diversity of pathogenic bacteria plays a key role in shaping resistance evolution. Understanding this link makes it possible to predict which strains are likely to evolve resistance and to optimize inhibitor use to prevent this outcome.
Project description:Murine ES cell line AB2.2 was infected for 2 and 4 hours with Salmonella Typhimurium. The percent of infected cells was tested by FACS analysis previous to RNA extraction. Total RNA was extracted from uninfected cells and infected with S. Typhimurium SL1344 at 2 and 4 hours infection. The biotin-labeled-cRNA was hybridized on Affymetrix Mouse GeneChip 430 2.0 array.<br>Paper Title: Interaction of enteric bacterial pathogens with murine embryonic stem cells<br>Abstract: <br>
Project description:Activity-based protein profiling (ABPP) is a chemoproteomic tool for detecting active enzymes in complex biological systems. We used ABPP to identify secreted bacterial and host serine hydrolases that are active in animals infected with the cholera pathogen Vibrio cholerae. Four V. cholerae proteases were consistently active in infected rabbits, and one, VC0157 (renamed IvaP), was also active in human cholera stool. Inactivation of IvaP influenced the activity of other secreted V. cholerae and rabbit enzymes in vivo, while genetic disruption of all four proteases increased the abundance and binding of an intestinal lectin—intelectin—to V. cholerae in infected rabbits. Intelectin also bound to other enteric bacterial pathogens, suggesting it may constitute a previously unrecognized mechanism of bacterial surveillance in the intestine that is inhibited by pathogen-secreted proteases. Our work demonstrates the power of activity-based proteomics to reveal host-pathogen enzymatic dialogue in an animal model of infection.
Project description:Individuals from different populations vary considerably in their susceptibility to immune-related diseases. To understand how genetic variation and natural selection contribute to these differences, we tested for the effects of African versus European ancestry on the transcriptional response of primary macrophages to live bacterial pathogens. A total of 9.3% of macrophage-expressed genes show ancestry-associated differences in the gene regulatory response to infection, and African ancestry specifically predicts a stronger inflammatory response and reduced intracellular bacterial growth. A large proportion of these differences are under genetic control: for 804 genes, more than 75% of ancestry effects on the immune response can be explained by a single cis- or trans-acting expression quantitative trait locus (eQTL). Finally, we show that genetic effects on the immune response are strongly enriched for recent, population-specific signatures of adaptation. Together, our results demonstrate how historical selective events continue to shape human phenotypic diversity today, including for traits that are key to controlling infection.
Project description:Individuals from different populations vary considerably in their susceptibility to immune-related diseases. To understand how genetic variation and natural selection contribute to these differences, we tested for the effects of African versus European ancestry on the transcriptional response of primary macrophages to live bacterial pathogens. 12% of macrophage-expressed genes show ancestry-associated differences in the gene regulatory response to infection, and African ancestry specifically predicts a stronger inflammatory response and reduced intracellular bacterial growth. A large proportion of these differences are under genetic control: for 569 genes, more than 75% of ancestry effects on the immune response can be explained by a single cis- or trans-acting eQTL. Finally, we show that genetic effects on the immune response are strongly enriched for recent, population-specific signatures of adaptation. Together, our results demonstrate how historical selective events continue to shape human phenotypic diversity today, including for traits that are central to coping with infection. Transcriptomic profiles of 503 infected (Listeria and Salmonella) and non-infected samples at 2hr time point.