Project description:Induction of whole genome gene expression level changes in leaves of grafted apple genotypes exhibiting contrasted QTL architecture (from one to a combination of three QTL) after the inoculation of the pathogenic fungus Venturia inaequalis
Project description:V. inaequalis causes apple scab disease, the most economically important disease of apples. In this study, we generated a comprehensive RNA-seq transcriptome of V. inaequalis during host colonization of apple, with six in planta time points (12hpi, 24hpi, 2dpi, 3dpi, 5dpi, 7dpi) and one in culture reference (fungus grown on cellophane membranes overlaying potato dextrose agar). Analysis of this transcriptome identified five in planta gene expression clusters or waves corresponding to three specific infection stages: early, mid and mid-late infection of subcuticular biotrophic host-colonization. In our analysis we focus on general fungal nutrition (plant cell wall degrading enzymes and transporters) as well as effectors (proteinaceous effectors and secondary metabolites). Early infection was characterized by the expression of genes that encode plant cell wall-degrading enzymes (PCWDEs) and proteins associated with oxidative stress responses. Mid-late infection was characterized by genes that encode PCWDEs and effector candidates (ECs).