Project description:We have a cDNA microarray to investigate changes in gene expression following transfer of fungal cultures from growth on glucose to growth on pectin or no carbon source. Our goal was to asses the roles of release from carbon catabolite repression and specific induction on proteins needed for metabolism (or utilization) of a single class of complex polysaccharide. Keywords = Aspergillus Keywords = Pectin Keywords = central metabolism Keywords = pectin Keywords = carbon catabolite repression Keywords = polysaccharide Keywords = exopolygalacturonase Keywords: time-course
Project description:We have a cDNA microarray to investigate changes in gene expression following transfer of fungal cultures from growth on glucose to growth on pectin or no carbon source. Our goal was to asses the roles of release from carbon catabolite repression and specific induction on proteins needed for metabolism (or utilization) of a single class of complex polysaccharide. Keywords = Aspergillus Keywords = Pectin Keywords = central metabolism Keywords = pectin Keywords = carbon catabolite repression Keywords = polysaccharide Keywords = exopolygalacturonase
Project description:Purpose: To explore conservation of gene regulation by the transcription factor clr-2/clrB in Neurospora crassa and Aspergillus nidulans Methods: mRNA from wild type and clr-2/clrB mutants were collected after a culture shift from sucrose/glucose to Avicel (crystaline cellulose) or no carbon media Results: We show that N. crassa and A. nidulans have similair global transcriptional responses to Avicel, with several hundred genes showing specific induction, though the induced genes are more specifically targeted at cellulose for N. crassa and more targeted at hemicellulose and pectin for A. nidulans. clr-2/clrB has a conserved fundamental function in cellulose induction, though the mechanism has diverged. Misexpression of clr-2 is sufficeint for inducer free cellulase secretion in N. crassa, but neither clrB or heterologous clr-2 is sufficient for inducer free cellulase secretion in A. nidulans. Conclusions: Our study demonstrates a conserved and essential role in cellulose utilization for the transcription factor clr-2 in filamentous ascomycetes and demonstrates that manipulation of clr-2 expression can be used to control cellulase expression in some species.
Project description:Purpose: To explore conservation of gene regulation by the transcription factor clr-2/clrB in Neurospora crassa and Aspergillus nidulans Methods: mRNA from wild type and clr-2/clrB mutants were collected after a culture shift from sucrose/glucose to Avicel (crystaline cellulose) or no carbon media Results: We show that N. crassa and A. nidulans have similair global transcriptional responses to Avicel, with several hundred genes showing specific induction, though the induced genes are more specifically targeted at cellulose for N. crassa and more targeted at hemicellulose and pectin for A. nidulans. clr-2/clrB has a conserved fundamental function in cellulose induction, though the mechanism has diverged. Misexpression of clr-2 is sufficeint for inducer free cellulase secretion in N. crassa, but neither clrB or heterologous clr-2 is sufficient for inducer free cellulase secretion in A. nidulans. Conclusions: Our study demonstrates a conserved and essential role in cellulose utilization for the transcription factor clr-2 in filamentous ascomycetes and demonstrates that manipulation of clr-2 expression can be used to control cellulase expression in some species. Biological triplicates of liquid culture N. crassa and A. nidulans were harvested at 4 hours and 6 hours, respectively, after a switch to media of interest. Global mRNA abundances from liquid cultures of N. crassa and A. nidulans were measured by sequencing on the Illumina Genome Analyzer IIx and HiSeq2000 platforms.
Project description:In Aspergillus nidulans, nitrogen and carbon metabolism are under the control of wide-domain regulatory systems, including nitrogen metabolite repression, carbon catabolite repression. Transcriptomic analysis of the wild type strain grown under different combinations of carbon and nitrogen regimes was performed, to identify differentially regulated genes. Carbon metabolism predominates as the most important regulatory signal but for many genes, both carbon and nitrogen metabolisms coordinate regulation.
Project description:Glutathione (GSH) is an abundant and widely distributed antioxidant in fungi. Hence, understanding cellular GSH metabolism is of vital importance to deciphering redox regulation in these microorganisms. In this study, we generated dugB (AN1879), dugC (AN1092), and dugB dugC double deletion mutants which display disruption of the GSH degradation pathway in Aspergillus nidulans. Deletion of dugB, dugC or both resulted in a moderate increase in GSH content under growing conditions and substantially slowed down the depletion of GSH pools under carbon starvation. Inactivation of dug genes caused reduced accumulation of reactive oxygen species, decreased autolytic cell wall degradation and extracellular enzyme production, increased sterigmatocystin formation but decreased viability in starving cultures. Changes in the transcriptomes suggested that enzyme secretions were controlled at post transcriptional level. In contrast, secondary metabolite production was also regulated at the level of mRNA abundance. Based on these findings, we suggest that GSH connects starvation and redox regulation to each other: A. nidulans cells utilize GSH as stored carbon source during starvation. The reduction of GSH contents of cells alters the redox state activating regulatory pathways responsible for carbon starvation stress responses. Under glucose rich conditions, inactivation of dug genes reduced conidia production of surface cultures, disturbed sexual development and down-regulated the transcription of genes encoding MAP kinase pathway proteins (e.g. steC, sskB, pbsA, hogA, mkkA) or proteins involved in the regulation of conidiogenesis or sexual differentiation (e.g. flbA,C,E, nosA, rosA, nsdC,D). These finding indicates that the authority of redox regulation goes far beyond the protection against redox stress; it affects development, stress responses (other than redox stress) and secondary metabolism as well.
Project description:Although tyrosol is a quorum-sensing molecule of Candida species, it has antifungal activity at supraphysiological concentrations. Here, we studied the effect of tyrosol on the physiology and genome-wide transcription of Aspergillus nidulans to gain insight into the background of the antifungal activity of this compound. Tyrosol efficiently reduced germination of conidia and the growth on various carbon sources at a concentration of 35 mM. The growth inhibition was fungistatic rather than fungicide on glucose and was accompanied with downregulation of 2199 genes related to e.g. mitotic cell cycle, glycolysis, nitrate and sulphate assimilation, chitin biosynthesis, and upregulation of 2250 genes involved in e.g. lipid catabolism, amino acid degradation and lactose utilization. Tyrosol treatment also upregulated genes encoding glutathione-S-transferases (GSTs), increased specific GST activities and the glutathione (GSH) content of the cells, suggesting that A. nidulans can detoxify tyrosol in a GSH-dependent manner even though this process was weak. Tyrosol did not induce oxidative stress in this species, but upregulated “response to nutrient levels”, “regulation of nitrogen utilization”, “carbon catabolite activation of transcription” and “autophagy” genes. Tyrosol may have disturbed the regulation and orchestration of cellular metabolism, leading to impaired use of nutrients, which resulted in growth reduction.
Project description:Investigation of whole genome gene expression level changes in Aspergillus nidulans OE::rsmA compared to wild-type RDIT9.32 (veA). A twelve array study using total RNA recovered from six separate cultures of Aspergillus nidulans wild-type RDIT9.32 (veA) and six separate cultures of Aspergillus nidulans overexpressing rsmA (restorer of secondary metabolism A), using custom-designed, four-plex arrays. The experiment was divided into two runs. In the first run, three biological replicates each of Aspergillus nidulans wild-type RDIT9.32 (veA) and Aspergillus nidulans carrying a plasmid overexpressing rsmA under the control of the gpdA promoter were assayed. In the second run, three biological replicates each of Aspergillus nidulans wild-type RDIT9.32 (veA) and Aspergillus nidulans overexpressing rsmA at the native locus under the control of the gpdA promoter were assayed.
Project description:Investigation of whole genome gene expression level changes in Aspergillus nidulans AN1599 (PbcR) overexpression mutant, compared to the FGSC A4 wild-type strain. Overexpression of the Zn(II)2Cys6 –type transcription factor, AN1599.4 (PbcR, pimaradiene biosynthetic cluster regulator), activates a secondary metabolite gene cluster in Aspergillus nidulans. Activation of the pathway in Aspergillus nidulans lead to a production of ent-pimara-8(14),15-diene.