Project description:During persistent antigen stimulation, CD8+ cytolytic T cells (CTL) show a gradual decrease in effector function, or “exhaustion”, which impairs the immune response to tumors and infections. Here we show that NFAT, a transcription factor with an established role in T cell activation, in parallel controls a second transcriptional program conferring the characteristic features of CD8+ T cell exhaustion, including upregulation of genes encoding inhibitory cell surface receptors and diminished TCR signaling. Expression of an engineered NFAT1, which induces this negative regulatory program in the absence of the effector program, interferes with the ability of CD8+ T cells to protect against Listeria infection or attenuate tumor growth in vivo. NFAT elicits this second program of gene expression in large part by binding to a subset of the sites occupied by NFAT during a typical effector response, suggesting that a balance between the two pathways determines the outcome of TCR signaling. Understanding the role of CA-RIT-NFAT1 in T cells
Project description:During persistent antigen stimulation, CD8+ cytolytic T cells (CTL) show a gradual decrease in effector function, or “exhaustion”, which impairs the immune response to tumors and infections. Here we show that NFAT, a transcription factor with an established role in T cell activation, in parallel controls a second transcriptional program conferring the characteristic features of CD8+ T cell exhaustion, including upregulation of genes encoding inhibitory cell surface receptors and diminished TCR signaling. Expression of an engineered NFAT1, which induces this negative regulatory program in the absence of the effector program, interferes with the ability of CD8+ T cells to protect against Listeria infection or attenuate tumor growth in vivo. NFAT elicits this second program of gene expression in large part by binding to a subset of the sites occupied by NFAT during a typical effector response, suggesting that a balance between the two pathways determines the outcome of TCR signaling. Determination of NFAT1 binding sites in CD8 T cells in vitro
Project description:The purpose of this study is to determine if there is an association between hepatitis C infection and kidney cancer. All patients who are diagnosed with kidney cancer and who will either have a biopsy or surgery will be offered to be tested for hepatitis C. The control group will be colon cancer patients. Both groups would be of recent diagnosis (6 months).
Project description:STING gain-of-function (GOF) mutations lead to T cell lymphopenia, in the context of severe combined immunodeficiency (SCID) for STING GOF V154M mice. This T cell lymphopenia, which is of central origin, has been described as type I IFN independent and associated with dysfunctions of the rare mature T cells found in the periphery. To better describe the biological mechanisms of these dysfunctions, we performed a transcriptomic analysis by RNA-seq on sorted splenic CD4+ and CD8+ mature T cells from STING GOF mice. We highlighted an unexpected T cell exhaustion phenotype that could partly explain their dysfunctions. Acquired very early in life, but only once the peripheral environment is reached, the phenotype appeared to depend neither on type I IFNs, nor on the intrinsic activation of STING in T or stromal cells. Mechanistically, the few mature T cells reaching the periphery seem to be rapidly impacted by the lymphopenic environment through increased antigenic and IL-7 stimulations that could lead to their exhaustion. By using STING GOF long term-hematopoietic stem cells (LT-HSC) transplantations with supportive wild-type bone marrow (BM) cells, we prevented the T cell exhaustion of STING GOF T cells in the resulting non lymphopenic context. With the support of lymphopenic RAG1 hypomorphic mice developing the phenotype, our data uncover a lymphopenia-mediated T cell exhaustion mechanism in STING GOF mice, for which a synergistic effect of the mutation is also envisaged.
Project description:Dysfunction in T cells limits the efficacy of cancer immunotherapy. We profiled the epigenome, transcriptome, and enhancer connectome of exhaustion-prone GD2-targeting HA-28z chimeric antigen receptor (CAR) T cells and control CD19-targeting CAR T cells, which present less exhaustion-inducing tonic signaling, at multiple points during their ex vivo expansion. We found widespread, dynamic changes in chromatin accessibility and 3D chromosome conformation preceding changes in gene expression, notably at loci proximal to exhaustion-associated genes such as PDCD1, CTLA4, and HAVCR2, and increased DNA motif access for AP-1 family transcription factors, which are known to promote exhaustion. Although T cell exhaustion has been studied in detail in mouse, we find that the regulatory networks of T cell exhaustion differ between the species and involve distinct loci of accessible chromatin and cis-regulated target genes in human CAR T cell exhaustion. Deletion of exhaustion-specific candidate enhancers of PDCD1 suppress the expression of PD-1 in an in vitro model of T cell dysfunction and in HA-28z CAR T cells, suggesting enhancer editing as a path forward in improving cancer immunotherapy.
Project description:Dysfunction in T cells limits the efficacy of cancer immunotherapy. We profiled the epigenome, transcriptome, and enhancer connectome of exhaustion-prone GD2-targeting HA-28z chimeric antigen receptor (CAR) T cells and control CD19-targeting CAR T cells, which present less exhaustion-inducing tonic signaling, at multiple points during their ex vivo expansion. We found widespread, dynamic changes in chromatin accessibility and 3D chromosome conformation preceding changes in gene expression, notably at loci proximal to exhaustion-associated genes such as PDCD1, CTLA4, and HAVCR2, and increased DNA motif access for AP-1 family transcription factors, which are known to promote exhaustion. Although T cell exhaustion has been studied in detail in mouse, we find that the regulatory networks of T cell exhaustion differ between the species and involve distinct loci of accessible chromatin and cis-regulated target genes in human CAR T cell exhaustion. Deletion of exhaustion-specific candidate enhancers of PDCD1 suppress the expression of PD-1 in an in vitro model of T cell dysfunction and in HA-28z CAR T cells, suggesting enhancer editing as a path forward in improving cancer immunotherapy.
Project description:The failure of T-cells to control tumor growth has been associated with several functional defects that collectively lead to T-cell “exhaustion.” This phenotype results from chronic antigen stimulation within the tumor microenvironment, but how repetitive antigenic stimulation leads to T-cell exhaustion remains poorly defined. Here we show that persistent antigen stimulation induces mitochondrial oxidative stress that reduces tricarboxylic acid (TCA) cycle activity. The resultant bioenergetic compromise impairs nucleotide triphosphate synthesis, induces endoplasmic reticulum (ER) stress, and activates an exhaustion-associated gene expression program. Reversal of oxidative stress with N-acetylcysteine effectively restores T-cell proliferation, effector function, and memory-associated gene expression and enhances anti-tumor T-cell efficacy in vivo. These data reveal that induction of mitochondrial oxidative stress is a critical component of terminal T-cell dysfunction. Furthermore, treatments that restore mitochondrial redox are sufficient to prevent T-cell exhaustion and enhance anti-tumor immunity.