Project description:Leaf shape is a spectacularly diverse trait that influences various aspects of plant physiology, and is even correlated with crop yield and quality in multiple species. However, only a few genetic dissections of leaf shape have been accomplished at a species-wide level. Here, we perform an initial characterization of leaf shape variation in Ipomoea batatas, the sweetpotato, at multiple scales of analysis. We use a transcriptomic survey to identify gene expression changes associated with two commonly studied leaf shape traits--circularity and aspect ratio using 19 individuals (accession) of sweetpotato. We comprehensively describe the remarkable morphological diversity in leaf shape in sweetpotato, and identify 147 differentially regulated genes associated with circularity and aspect ratio, providing an initial set of hypotheses regarding the genetic basis of leaf shape in this species.
Project description:Leaves are colonised by a complex mix of microbes, termed the leaf microbiota. Even though the leaf microbiota is increasingly recognised as an integral part of plant life and health, our understanding of its interactions with the plant host is still limited. Here, mature, axenically grown Arabidopsis thaliana plants were spray-inoculated with diverse leaf-colonising bacteria. Whole transcriptome sequencing revealed that four days after inoculation, leaf transcriptional changes to colonisation by non-pathogenic and pathogenic bacteria differed in strength but not in the type of response.
Project description:Artemisia argyi Lev. et Vant., a common ancient compositae species, is widely utilized in traditional Chinese medicine. The underlying mechanism of terpenoid biosynthesis in leaf has been suggested to play an important role in this medicine. However, the transcriptome of A. argyi has not been established. Here, we performed RNA sequencing in leaf, root and stem tissues to identify all possibly transcribed genes. We assembled a total of 99,807 unigenes by analyzing the expression profiling that were generated from the three tissues. Of them, 67,446 unigenes (67.58%) were annotated from public databases including GO, KEGG, COG. We further performed differential gene expression analysis between leaf with stem and root tissue. Our findings revealed that a total of 7,725 unigenes were specified transcribed in leaf. In particular, we determined multiple genes, which encode significant enzymes including HMGR, MVD, DXS, DXR, HDS and HDR, and transcription factors related to terpenoid synthesis. This study established a valuable resource of transcriptome and identified many transcribed genes related to terpenoid biosynthesis, providing the genomic basis for further studies on the molecular mechanism of the medicine for this species.
Project description:Leaf senescence is a tightly controlled and complex developmental process that shares many similarities across species, yet our understanding of the underlying conserved molecular mechanisms is still lacking. Here, we observed functional conservation of leaf senescence underlying pathways in A. thaliana, O. sativa, and S. lycopersicum. From machine learning-based integration of data from nearly 10 000 samples to obtain a universal regulatory network of leaf senescence, it was found that mitostasis is the cross-species central biological hub. We measure and compare changes in the transcriptome and metabolome of A. thaliana, O. sativa, and S. lycopersicum leaves under mitostress/natural senescence. In data from different species, mitostasis-related transcription factors binding site enrichment and amino acids expression changes converge on putative senescence modulators. Our study provides a cross-species, multi-omics perspective for understanding the leaf senescence conserved mechanisms.
Project description:Leaves are colonised by a complex mix of microbes, termed the leaf microbiota. Even though the leaf microbiota is increasingly recognised as an integral part of plant life and health, our understanding of its interactions with the plant host is still limited. Here, mature, axenically grown Arabidopsis thaliana plants were spray-inoculated with diverse leaf-colonising bacteria. Whole transcriptome sequencing revealed that four days after inoculation, leaf transcriptional changes to colonisation by non-pathogenic and pathogenic bacteria differed in strength but not in the type of response. Inoculation of plants with different densities of the non-pathogenic bacterium Williamsia sp. Leaf354 showed that high bacterial titers caused disease phenotypes and led to severe transcriptional reprogramming with a strong focus on plant defence. This SuperSeries is composed of the SubSeries listed below.