Project description:28 Streptomyces strains isolated from common scab lesions of potato tubers from a wide geographic range in Norway, were selected for microarray analysis. The selected strains were subjected to species identification by microarray, 16S phylogenetic analysis and PCR; and microarray-based comparative genome analysis. To our knowledge, this is the first report of S. turgidiscabies and S. europaeiscabiei in Norway.
2010-05-01 | GSE20487 | GEO
Project description:Phylogenetic and Comparative Genomics Study of Cephalopina titillator Based on Mitochondrial Genomes
Project description:we performed a comparative proteomics analysis of Korla fragrant pear after inoculation with Alternaria sp., at 0h, 24h, 72h, 120 h using iTRAQ-based quantitative proteomic technique. This study aimed to investigate the protein species expression profiles in response to Alternaria sp., infection, explore the potential molecular mechanisms of Korla fragrant pear response against Alternaria sp., and further obtain a comprehensive understanding of Korla fragrant pear-Alternaria sp interactions. The finding may provide novel clues to Korla fragrant pear resistance to Alternaria sp., and may lay the foundation for an in-depth understanding of the interaction between Korla fragrant pear and Alternaria sp., at the proteome level.
Project description:PHYLOGENETIC RELATIONSHIPS OF Oxytropis SECTION Gloeocephala
| PRJEB44711 | ENA
Project description:Comparative and phylogenetic analysis of the complete chloroplast genomes of 10 Artemisia selengensis resources based on high-throughput sequencing
Project description:Background: Alternaria exposure is associated with severe asthma in humans. Alternaria exposure in mice potently activates group 2 innate lymphoid cells (ILC2s) via the IL-33/ST2 axis and causes ILC2s to robustly secrete type 2 cytokines. Objective: Our aim was to determine whether conventionally used ILC2 markers, ST2 (IL-33R) and CD127 (IL-7Ra), were sufficient to identify all Th2-cytokine producing ILCs after Alternaria exposure. Methods: Mice received intranasal Alternaria for three days prior to analysis. Lung ILCs were identified by flow cytometry as CD45+Lineage−Thy1.2+ lymphocyte-sized cells, divided into four subsets based on ST2 and CD127 expression, and stained for intracellular cytokines and transcription factors. Sort-purified ILC subpopulations were also analyzed by RNA sequencing and qPCR. Results: Alternaria exposure led to accumulation of all ILC populations regardless of ST2 or CD127 expression. Nearly half of the GATA-3+, IL-5+, and IL-13+ ILCs were “unconventional” as they were either single or double negative for ST2/CD127. Further, these populations upregulated CD25, KLRG1, and ICOS after Alternaria challenge. Some activated unconventional IL-5+ ILC2s also produced IFNγ and IL-17A. In addition to shared ILC2 transcripts (Gata3, Il5, Il13) in all populations, RNA-seq further identified novel transcripts enriched in each subset. Finally, transcripts from all populations that correlated best with IL-5 and IL-13 production included Tnfrsf18, Ffar2, and Pde4b. Conclusions: Unconventional ST2- and CD127-negative mouse lung ILC2 populations are induced by Alternaria. Thus, commonly used lung ILC2 identification methods based on ST2 and CD127 do not accurately account for the total ILC2 burden and may exclude nearly half of these cells.
2019-08-22 | GSE136156 | GEO
Project description:Alternaria infectoria species group genomes
Project description:28 Streptomyces strains isolated from common scab lesions of potato tubers from a wide geographic range in Norway, were selected for microarray analysis. The selected strains were subjected to species identification by microarray, 16S phylogenetic analysis and PCR; and microarray-based comparative genome analysis. To our knowledge, this is the first report of S. turgidiscabies and S. europaeiscabiei in Norway. 28 Norwegian Streptomyces strains were hybridized in duplicates, one S.turgidiscabies strain (St32) and one S.scabies strain (ATCC49173) were hybridized in 4 replicates. Two out of 64 hybridizations failed (replicate hybridizations of Norwegian strains 33 and 44), for a total of 62 samples. Normalization was based on log-ratios against reference strain.
Project description:Molecular clocks are the basis for dating the divergence between lineages over macro-evolutionary timescales (~104-108 years). However, classical DNA-based clocks tick too slowly to inform us about the recent past. Here, we demonstrate that stochastic DNA methylation changes at a subset of cytosines in plant genomes possess a clock-like behavior. This ‘epimutation-clock’ is orders of magnitude faster than DNA-based clocks and enables phylogenetic explorations on a scale of years to centuries. We show experimentally that epimutation-clocks recapitulate known topologies and branching times of intra-species phylogenetic trees in the selfing plant A. thaliana and the clonal seagrass Z. marina, which represent the two primary modes of plant reproduction. This discovery will open new possibilities for high-resolution temporal studies of plant biodiversity.