Project description:While Wolbachia are commonly found among arthropods, intraspecific infection rates can vary substantially across the geographic populations. Here we report nearly 100% prevalence of Wolbachia in the global populations of the yellow crazy ant, Anoplolepis gracilipes. To understand coevolutionary history between Wolbachia and A. gracilipes, we identified single nucleotide polymorphisms (SNPs) in Wolbachia from the ant across 12 geographical regions and compared the phylogeny of SNP-based Wolbachia to patterns of the ant's mitochondrial DNA (mtDNA) variation. Our results revealed a strong concordance between phylogenies of Wolbachia and host mtDNA, providing immediate evidence of co-divergence. Among eight identified SNP loci separating the genetic clusters of Wolbachia, seven loci are located in potential protein-coding genes, three of which being non-synonymous SNPs that may influence gene functions. We found a Wolbachia hypothetical protein gene with signature of positive selection. These findings jointly allow us to characterize Wolbachia-ant coevolution and also raise a question about mechanism(s) underlying maintenance of high prevalence of Wolbachia during the colonization of this invasive ant.
Project description:BackgroundReproductive division of labor is one of the key features of social insects. Queens are adapted for reproduction while workers are adapted for foraging and colony maintenance. In many species, however, workers retain functional ovaries and can lay unfertilized male eggs or trophic eggs. Here we report for the first time on the occurrence of physogastric workers and apparent worker reproduction in the invasive yellow crazy ant Anoplolepis gracilipes (Fr. Smith). We further examined the reproductive potential and nutritional role of physogastric workers through multidisciplinary approaches including morphological characterization, laboratory manipulation, genetic analysis and behavioral observation.ResultsEgg production with two types of eggs, namely reproductive and trophic eggs, by physogastric workers was found. The reproductive egg was confirmed to be haploid and male-destined, suggesting that the workers produced males via arrhenotokous parthenogenesis as no spermatheca was discovered. Detailed observations suggested that larvae were mainly fed with trophic eggs. Along with consumption of trophic eggs by queens and other castes as part of their diet, the vital role of physogastric workers as "trophic specialist" is confirmed.ConclusionWe propose that adaptive advantages derived from worker reproduction for A. gracilipes may include 1) trophic eggs provisioned by physogastric workers likely assist colonies of A. gracilipes in overcoming unfavorable conditions such as paucity of food during critical founding stage; 2) worker-produced males are fertile and thus might offer an inclusive fitness advantage for the doomed orphaned colony.
Project description:The yellow crazy ant (Anoplolepis gracilipes (Smith, 1857)) is a prominent invasive species exhibiting variable population dynamics. Through collecting long-term climate data and validating field surveys with MaxEnt SDM projections, our results indicated that winter temperature and precipitation accumulation strongly influence the population dynamics. An aggression analysis showed that A. gracilipes nests with higher aggression levels (over 2.5 scores) experienced a higher mean maximum temperature (31.84 ± 0.43 °C) and lower prevalence of wAgra (84.8 ± 4.70%) in A. gracilipes from June to October. The nest manipulation and aggression experiments confirmed that temperature increases aggression (1.3 to 2.8 scores) among A. gracilipes workers due to the reduced prevalence of wAgra. To the best of our knowledge, this is the first case of a notable reduction in the prevalence of Wolbachia (100 to 66%) within a colony of A. gracilipes while maintaining stable nests for further experiments.