Project description:BackgroundReproductive division of labor is one of the key features of social insects. Queens are adapted for reproduction while workers are adapted for foraging and colony maintenance. In many species, however, workers retain functional ovaries and can lay unfertilized male eggs or trophic eggs. Here we report for the first time on the occurrence of physogastric workers and apparent worker reproduction in the invasive yellow crazy ant Anoplolepis gracilipes (Fr. Smith). We further examined the reproductive potential and nutritional role of physogastric workers through multidisciplinary approaches including morphological characterization, laboratory manipulation, genetic analysis and behavioral observation.ResultsEgg production with two types of eggs, namely reproductive and trophic eggs, by physogastric workers was found. The reproductive egg was confirmed to be haploid and male-destined, suggesting that the workers produced males via arrhenotokous parthenogenesis as no spermatheca was discovered. Detailed observations suggested that larvae were mainly fed with trophic eggs. Along with consumption of trophic eggs by queens and other castes as part of their diet, the vital role of physogastric workers as "trophic specialist" is confirmed.ConclusionWe propose that adaptive advantages derived from worker reproduction for A. gracilipes may include 1) trophic eggs provisioned by physogastric workers likely assist colonies of A. gracilipes in overcoming unfavorable conditions such as paucity of food during critical founding stage; 2) worker-produced males are fertile and thus might offer an inclusive fitness advantage for the doomed orphaned colony.
Project description:The yellow crazy ant (Anoplolepis gracilipes (Smith, 1857)) is a prominent invasive species exhibiting variable population dynamics. Through collecting long-term climate data and validating field surveys with MaxEnt SDM projections, our results indicated that winter temperature and precipitation accumulation strongly influence the population dynamics. An aggression analysis showed that A. gracilipes nests with higher aggression levels (over 2.5 scores) experienced a higher mean maximum temperature (31.84 ± 0.43 °C) and lower prevalence of wAgra (84.8 ± 4.70%) in A. gracilipes from June to October. The nest manipulation and aggression experiments confirmed that temperature increases aggression (1.3 to 2.8 scores) among A. gracilipes workers due to the reduced prevalence of wAgra. To the best of our knowledge, this is the first case of a notable reduction in the prevalence of Wolbachia (100 to 66%) within a colony of A. gracilipes while maintaining stable nests for further experiments.
Project description:The yellow crazy ant Anoplolepis gracilipes is an invasive species that threatens biodiversity in introduced ecosystems. We sequenced the A. gracilipes mitogenome using next-generation sequencing methods. The circular mitogenome of A. gracilipes was 16,943?bp included 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNAs, and a single large non-coding region of 893?bp. The base composition was AT-biased (72%). Three genomic rearrangements compared to ancestral insects were found. Phylogenetic analysis based on the concatenated nucleotide sequences of the 13 protein-coding genes supports A. gracilipes belonging to the Formicinae subfamily. We announce the A. gracilipes mitogenome as a DNA reference for further population genetic, phylogenetic, and evolutionary analyses.
Project description:Coca is the natural source of cocaine as well as a sacred and medicinal plant farmed by South American Amerindians and mestizos. The coca crop comprises four closely related varieties classified into two species (Amazonian and Huánuco varieties within Erythroxylum coca Lam., and Colombian and Trujillo varieties within Erythroxylum novogranatense (D. Morris) Hieron.) but our understanding of the domestication and evolutionary history of these taxa is nominal. In this study, we use genomic data from natural history collections to estimate the geographic origins and genetic diversity of this economically and culturally important crop in the context of its wild relatives. Our phylogeographic analyses clearly demonstrate the four varieties of coca comprise two or three exclusive groups nested within the diverse lineages of the widespread, wild species Erythroxylum gracilipes; establishing a new and robust hypothesis of domestication wherein coca originated two or three times from this wild progenitor. The Colombian and Trujillo coca varieties are descended from a single, ancient domestication event in northwestern South America. Huánuco coca was domesticated more recently, possibly in southeastern Peru. Amazonian coca either shares a common domesticated ancestor with Huánuco coca, or it was the product of a third and most recent independent domestication event in the western Amazon basin. This chronology of coca domestication reveals different Holocene peoples in South America were able to independently transform the same natural resource to serve their needs; in this case, a workaday stimulant. [Erythroxylum; Erythroxylaceae; Holocene; Museomics; Neotropics; phylogeography; plant domestication; target-sequence capture.].