Project description:Summary: Spinal cord injury (SCI) is a damage to the spinal cord induced by trauma or disease resulting in a loss of mobility or feeling. SCI is characterized by a primary mechanical injury followed by a secondary injury in which several molecular events are altered in the spinal cord often resulting in loss of neuronal function. Analysis of the areas directly (spinal cord) and indirectly (raphe and sensorimotor cortex) affected by injury will help understanding mechanisms of SCI. Hypothesis: Areas of the brain primarily affected by spinal cord injury are the Raphe and the Sensorimotor cortex thus gene expression profiling these two areas might contribute understanding the mechanisms of spinal cord injury. Specific Aim: The project aims at finding significantly altered genes in the Raphe and Sensorimotor cortex following an induced moderate spinal cord injury in T9.
Project description:The mammalian brain contains numerous neurons distributed across forebrain, midbrain, and hindbrain that project axons to the lower spinal cord and work in concert to control movement and achieve homeostasis. Extensive work has mapped the anatomical location of supraspinal cell types and continues to establish specific physiological functions. The patterns of gene expression that typify and distinguish these disparate populations, however, are mostly unknown. Here we combined retrograde labeling of supraspinal cell nuclei with fluorescence activated nuclei sorting and single nuclei RNA sequencing analyses to transcriptionally profile neurons that project axons from the mouse brain to lumbar spinal cord. We identified fourteen transcriptionally distinct cell types and used a combination of established and newly identified marker genes to assign an anatomical location to each. To validate the putative marker genes, we visualized selected transcripts and confirmed selective expression within lumbar-projecting neurons in discrete supraspinal regions. Finally, we illustrate the potential utility of these data by examining the expression of transcription factors that distinguish different supraspinal cell types and by surveying the expression of receptors for growth and guidance cues that may be present in the spinal cord. Collectively these data establish transcriptional differences between anatomically defined supraspinal populations, identify a new set of marker genes of use in future experiments, and provide insight into potential differences in cellular and physiological activity across the supraspinal connectome.