Project description:The recent detection and isolation of the aflagellate Campylobacter ureolyticus (previously known as Bacteroides ureolyticus) from intestinal biopsy specimens and fecal samples of children with newly diagnosed Crohn's disease led us to investigate the pathogenic potential of this bacterium. Adherence and gentamicin protection assays were employed to quantify the levels of adherence to and invasion into host cells. C. ureolyticus UNSWCD was able to adhere to the Caco-2 intestinal epithelial cell line with a value of 5.341% ± 0.74% but was not able to invade the Caco-2 cells. The addition of two proinflammatory cytokines, tumor necrosis factor alpha (TNF-α) and gamma interferon (IFN-γ), to the cell line did not affect attachment or invasion, with attachment levels being 4.156% ± 0.61% (P = 0.270) for TNF-α and 6.472% ± 0.61% (P = 0.235) for IFN-γ. Scanning electron microscopy visually confirmed attachment and revealed that C. ureolyticus UNSWCD colonizes and adheres to intestinal cells, inducing cellular damage and microvillus degradation. Purification and identification of the C. ureolyticus UNSWCD secretome detected a total of 111 proteins, from which 29 were bioinformatically predicted to be secretory proteins. Functional classification revealed three putative virulence and colonization factors: the surface antigen CjaA, an outer membrane fibronectin binding protein, and an S-layer RTX toxin. These results suggest that C. ureolyticus has the potential to be a pathogen of the gastrointestinal tract.
Project description:Draft genome sequences of a Campylobacter curvus and three Campylobacter ureolyticus strains isolated from human colonic mucosal tissue
Project description:We report the use of differential RNA-sequencing for the determination of the primary transcriptome of wildtype Campylobacter jejuni NCTC 11168. This allows for the genome-wide determination of transcription start sites.
Project description:We report the use of differential RNA-sequencing for the determination of the primary transcriptome of the fur perR mutant of Campylobacter jejuni NCTC 11168. This allows for the genome-wide determination of transcription start sites. Campylobacter jejuni NCTC 11168 fur perR mutant was grown to late log phase, RNA was purified and used for differential RNA-sequencing by 454 sequencing with barcoded libraries, and used for determination of genome-wide transcription start sites