Project description:Primary chimeric antigen receptor (CAR) natural killer (NK) cells show strong cytotoxic efficacy against acute myeloid leukemia (AML) in vivo. However, NK cell-mediated tumor killing is often impaired by tumor-mediated immune cell inactivation. Here, we report a novel strategy to overcome NK cell inhibition caused by the immune checkpoint NKG2A, which interacts with HLA-E expressed on AML blasts. We generated AML-specific CD33-directed CAR (CAR33)-KLRC1ko-NK cells with CRISPR/Cas9-based gene editing of the NKG2A-encoding KLRC1 gene. Single-cell multi-omic analyses revealed a higher proportion of activated cells in CAR33-NK- and CAR33-KLRC1ko-NK pools, which were preserved following AML-cell contact. This activated state of the CAR33-KLRC1ko-NK cells has been translated into improved antileukemic activity in vitro and in vivo against AML cell lines and primary blasts. This dual modification of primary NK cells has the potential to bypass the suppressive effect not only of AML but also in a broad range of other cancer identities.
Project description:Peripheral blood NK cells were cultured into either control or cytokine-induced memory-like NK cells as described in PMID: 32614951. After differentiation, cells were labeled with hashtag antibodies and cite-seq antibodies and control and memory-like NK cells were combined and loaded onto the 10x Genomics Chromium Instrument a the McDonnell Genome Institute at Washington University School of Medicine. The following samples were analyzed to develop a classification tool for unbiased identification of memory-like NK cells in a bulk single-cell RNA-seq population.
Project description:The purpose of this experiment was two-fold. The first was to examine how the gene expression profile changes over time in C7R-CAR NK cells. C7R is a constitutively active IL-7 receptor that provides persistent activation of STAT5. The second was to examine the differential gene expression in C7R CAR NK cells or CAR NK treated with exogenous IL-15 (exIL15) after 2 weeks of stimulation.
Project description:We performed transcriptome sequencing on Neo-2/15 stimulated CAR NK cells,to shed light on the function and phenotype changes of CAR-NK cells stimulated by IL-2 and Neo-2/15.
Project description:Cord blood (CB)-derived chimeric antigen receptor (CAR)-natural killer (NK) cells targeting CD19 has been shown to be effective against B cell malignancies. While human CD56+ NK cells can be expanded in vitro, it is also known that NK cells can be differentiated from hematopoietic progenitor cells. It is still unclear whether CAR-NK cells are originated from mature NK cells or NK progenitor cells in CB. Here we found that CAR-NK cells are predominantly derived from the CD56- NK progenitor cells. We first found that substantial numbers of CD19 CAR-NK cells were produced from the CD56- CB mononuclear cells after in vitro culture for two weeks. Single cell RNAseq analysis of CD56-CD3-CD14-CD19- CB mononuclear cells revealed that those cells were subdivided into three subpopulations based on the expression of CD34 and HLA-DR. NK cells were predominantly produced from the CD34-HLA-DR- cells. In addition, in the CD34-HLA-DR- cells, only CD7+ cells could differentiate into NK cells. These results indicate that CD56-CD7+CD34- HLA-DR-lineage marker (Lin)- cells are the major origin of human CB-derived CAR-NK cells, indicating that we need to develop methods to enhance the quality and quantity of NK cells produced from these NK cell progenitor cells.
Project description:Chimeric antigen receptor (CAR) engineering of NK cells is an active area of research with early-phase clinical studies showing an excellent safety profile with encouraging clinical responses. However, the transcriptional signatures that control the fate of CAR-NK cell after infusion and their association with tumor control remain poorly understood. Here, we performed single-cell RNA sequencing (scRNA-seq) to depict the evolution of various engineered CAR-NK cells from the ex vivo infusion products to the in vivo peak phase of tumor control and finally to the relapse phase. Single cell RNA sequencing (scRNA) has revolutionized high-thoughout systems-based analysis of cellular and functional heterogeneity, and dynamic changes in the immune response during the anti-tumor immune cell therapy . The goals of this work are to compare transcriptome profiling (RNA-seq) from both engrafted tumor cells and infused CAR-NK cells over time of treatment course to evaluate the kenetic of tumor cell response and effector functional change of CAR-NK cell. Our study represents the first detailed transcriptomic analysis of using CAR-NK cell therapy aganist Raji-engrafted mouse model. Collecting samples from different time points and organs, the data analysis reported here should privide an envision of the dynamic about how tumor response to immune cell therapy of using CAR-NK cells and also how immune effector fucntion of CAR-NK cell was modulated over time during the treatment courses.
Project description:To expedite immunotherapy development, better analysis of treatment efficacy at early in vitro stages is needed. Using a droplet-based microfluidic platform, we have established a method for multi-parameter quantifiable phenotypic and genomic observations of immunotherapies. Chimeric antigen receptor (CAR) NK cells provide treatment of interest in the current immunotherapy landscape and provide an optimal model for evaluating our novel methodology. For this approach, NK cells transduced with a CD19 CAR were compared to non-transduced NK cells in their ability to kill a lymphoma cell line. Using our novel single-cell droplet array platform, we quantified the increase in cytotoxicity and synaptic contact formation of CAR-NK cells over non-transduced NK cells. With our droplet sorter, we separated NK cells based on target cell killing for transcriptomic sequencing. Our data revealed expected improvement in cytotoxicity with the CD19 CAR but more importantly, provided unique insights into the factors involved in the cytotoxic mechanisms of CAR NK cells. This demonstrates a novel, improved system for immunotherapy screening.
Project description:Chimeric antigen receptor (CAR) T cell therapy is a promising immunotherapy against cancer. Although there is a growing interest in other cell types, a comparison of CAR immune effector cells in challenging solid tumor contexts is lacking. Here, we compare mouse and human NKG2D-CAR expressing T cells, NK cells and macrophages against glioblastoma, the most aggressive primary brain tumor. In vitro we show that T cell cancer killing is CAR-dependent, whereas intrinsic cytotoxicity overrules CAR-dependence for NK cells and CAR macrophages reduce glioma cells in co-culture assays. In orthotopic immunocompetent glioma mouse models, systemically administered CAR T cells demonstrate superior accumulation in the tumor and each immune cell type induces distinct changes in the tumor microenvironment. An otherwise low therapeutic efficacy is significantly enhanced by co-expression of pro-inflammatory cytokines in all CAR immune effector cells, underscoring the necessity for multifaceted cell engineering strategies to overcome the immunosuppressive solid tumor microenvironment.