Project description:Structural analysis of chromosome folding in vivo has been revolutionized by Chromosome Conformation Capture (3C) and related methods, which use proximity ligation to identify chromosomal loci in physical contact. We recently described a variant 3C technique, Micro-C, in which chromatin is fragmented to mononucleosomes using micrococcal nuclease, enabling nucleosome-resolution folding maps of the genome. Here, we describe an improved Micro-C protocol using long crosslinkers, termed Micro-C XL, which exhibits greatly increased signal to noise, and provides further insight into the folding of the yeast genome. We also find that signal to noise is much improved in Micro-C XL libraries generated from relatively insoluble chromatin as opposed to soluble material, providing a simple method to physically enrich for bona-fide long-range interactions. Micro-C XL maps of the budding and fission yeast genomes reveal both short-range chromosome fiber features such as chromosomally-interacting domains (CIDs), as well as higher-order features such as clustering of centromeres and telomeres, thereby addressing the primary discrepancy between prior Micro-C data and reported 3C and Hi-C analyses. Interestingly, comparison of chromosome folding maps of S. cerevisiae and S. pombe revealed widespread qualitative similarities, yet quantitative differences, between these distantly-related species. Micro-C XL thus provides a single assay suitable for interrogation of chromosome folding at length scales from the nucleosome to the full genome.
Project description:gen107_ptgs - chip in silencing suppressor plants or in mirna plants - What are the genes that are differentially regulated in various tissues derived from silencing suppressor plants or miRNA mutants? - How are the histone modifications and the chromatin structure in miRNA mutants or in silencing suppressor plants?
Project description:3 samples, 2 reps each. comparison of wildtype cotyledon to RNAioleosin transgenic Using RNAi, the seed oil body protein 24-kDa oleosin has been suppressed in transgenic soybeans. The endoplasmic reticulum (ER) forms micro-oil bodies about 50 nm in diameter that coalesce with adjacent oil bodies forming a hierarchy of oil body sizes. The oil bodies in the oleosin knockdown form large oil body-ER complexes with the interior dominated by micro-oil bodies and intermediate-sized oil bodies, while the peripheral areas of the complex are dominated by large oil bodies. The complex merges to form giant oil bodies with onset of seed dormancy that disrupts cell structure. The transcriptome of the oleosin knockdown shows few changes compared to wild-type. Proteomic analysis of the isolated oil bodies of the 24-kDa oleosin knockdown shows the absence of the 24-kDa oleosin and the presence of abundant caleosin and lipoxygenase. The formation of the micro-oil bodies in the oleosin knockdown is interpreted to indicate a function of the oleosin as a surfactant.
Project description:Genome-wide mapping of nucleosomes has revealed a great deal about the relationships between chromatin structure and control of gene expression, and has led to mechanistic hypotheses regarding the rules by which chromatin structure is established. High-throughput sequencing has recently become the technology of choice for chromatin mapping studies, yet analysis of these experiments is still in its infancy. Here, we introduce a pipeline for analyzing deep sequencing maps of chromatin structure and apply it to data from S. cerevisiae. We analyze digestion series where nucleosomes are isolated from under- and over-digested chromatin. We find that certain classes of nucleosomes are unusually susceptible or resistant to overdigestion, with promoter nucleosomes easily digested and mid-coding region nucleosomes being quite stable. We find evidence for highly sensitive nucleosomes located within “nucleosome-free regions,” suggesting that these regions are not always completely naked but instead are likely associated with easily-digested nucleosomes. Finally, since RNA polymerase is the dominant energy-consuming machine that operates on the chromatin template, we analyze changes in chromatin structure when RNA polymerase is inactivated via a temperature-sensitive mutation. We find evidence that RNA polymerase plays a role in nucleosome eviction at promoters, and is also responsible for retrograde shifts in nucleosomes during transcription. Loss of RNA polymerase results in a relaxation of chromatin structure to more closely match in vitro nucleosome positioning preferences. Together, these results provide analytical tools and experimental guidance for nucleosome mapping experiments, and help disentangle the interlinked processes of transcription and chromatin packaging. Keywords: Genomic Solexa/Illumina sequencing of mononucleosomes. Titration series: gel-purified mononucleosomal DNA from three different titration levels – underdigested, typical digestion, and overdigested. RP021 series: MNase-seq at 0, 20, and 120 minutes after shifting these cells from 25 C to 37 C.
Project description:Here, we adopt a method that combines tRNA-seq and cp-RNA-seq to identify and quantify tRFs and tRNAs in plants. We provide a high-quality expression atlas of tRFs and tRNAs in Arabidopsis and rice, and uncovers complex tRFs repertoire and the dynamic expressions of tRNA genes in plants.
Project description:ChIP-seq analyses were performed in MEL cells expressing BirA alone or BirA and FLAG-Biotin tagged BCL11A (XL isoform). BCL11A chromatin occupancy in MEL cell line.