Project description:An Autonomous Underwater Vehicle (AUV) and large volume underwater pumps were used to collect microbial biomass from offshore waters of the Sargasso Sea, from surface waters and into the deep ocean. Seawater collection was performed along a transect in the western North Atlantic Ocean beginning near Bermuda and ending off the coast of Massachusetts, capturing metabolic signatures from oligotrophic, continental margin, and productive coastal ecosystems.
Project description:Local adaptation is often a product of environmental variations in geographical space and has implications for biodiversity conservation. We investigated the role of latitudinal heterogeneity in climate on the organization of genetic and phenotypic variation in the dominant coastal tree Avicennia schaueriana. In a common garden experiment, samples from an equatorial region, with pronounced seasonality in precipitation, accumulated less biomass, and showed lower stomatal conductance and transpiration, narrower xylem vessels, smaller leaves and higher reflectance of long wavelengths by the stem epidermis than samples from a subtropical region, with seasonality in temperature and no dry season. Transcriptomic differences identified between trees sampled under field conditions at equatorial and subtropical sites, were enriched in functional categories such as responses to temperature, solar radiation, water deficit, photosynthesis and cell wall biosynthesis. Remarkably, the diversity based on genome-wide SNPs revealed a north-south genetic structure and signatures of selection were identified for loci associated with photosynthesis, anthocyanin accumulation and the responses to osmotic and hypoxia stresses. Our results suggest the existence of divergence in key resource-use characteristics, likely driven by seasonality in water deficit and solar radiation. These findings provide a basis for conservation plans and for predicting coastal plants responses to climate change.
2020-05-15 | GSE116060 | GEO
Project description:NifH Sequencing from Western North Atlantic Coastal Waters
Project description:The available energy and carbon sources for prokaryotes in the deep ocean remain still largely enigmatic. Reduced sulfur compounds, such as thiosulfate, are a potential energy source for both auto- and heterotrophic marine prokaryotes. Shipboard experiments performed in the North Atlantic using Labrador Sea Water (~2000 m depth) amended with thiosulfate led to an enhanced prokaryotic dissolved inorganic carbon (DIC) fixation.
Project description:Metaproteomics is an increasingly popular methodology that provides information regarding the metabolic functions of specific microbial taxa and can be used to assess environmental stressors and change and has potential for contributing to ocean ecology and biogeochemical studies. To enable future large-scale studies, a multi-laboratory intercomparison was conducted to assess comparability and reproducibility of taxonomic and functional results and their sensitivity to methodological variables. This ocean metaproteomic intercomparison consisted of two major activities: a laboratory component, where independent labs processed identical ocean samples simultaneously collected from the North Atlantic Ocean , and a subsequent informatic component.
Project description:Metaproteomics is an increasingly popular methodology that provides information regarding the metabolic functions of specific microbial taxa and can be used to assess environmental stressors and change and has potential for contributing to ocean ecology and biogeochemical studies. To enable future large-scale studies, a multi-laboratory intercomparison was conducted to assess comparability and reproducibility of taxonomic and functional results and their sensitivity to methodological variables. This ocean metaproteomic intercomparison consisted of two major activities: a laboratory component, where independent labs processed identical ocean samples simultaneously collected from the North Atlantic Ocean , and a subsequent informatic component.
Project description:The European clam, Ruditapes decussatus (Linnaeus, 1758) is a bivalve mollusc of the family Veneridae native to the European Atlantic and Mediterranean coastal waters. Its production is exclusively based on natural recruitment, which is subject to high annual fluctuations due to adversely affected by pollution and other environmental factors. Microarray analyses have been performed in four gonadal maturation stages of two higly productive Portuguese wild populations (Ria Formosa in South and Ria de Aveiro in North) characterized by different responses to spawning induction.
Project description:In the North Sea and adjacent North Atlantic coastal areas fish experience relatively high levels of persistent organic pollutants. The aim of this study is to compare the mode of actions of environmentally relevant concentrations of halogenated compounds and their mixtures in Atlantic cod. Juvenile male cod were fed mixtures of chlorinated (PCBs, DDT analogs, chlordane, lindane and toxaphene), brominated (PBDEs) and fluorinated (Perfluorooctanesulfonate/PFOS) compounds for one month. One group received a mixture of all three compounds. Transcriptome analysis of liver samples was performed to identify the main affected pathways. Accumulated levels of chemicals in cod liver reflected concentrations found in wild fish. Pathway analysis revealed that the treatment effects by each of the three groups of chemicals (chlorinated, brominated and fluorinated) converged on activation of the unfolded protein response (UPR). The results of our transcriptomics analysis suggest that the UPR pathway is a sensitive common target of halogenated organic environmental pollutants
Project description:The largest of the tuna species, Atlantic bluefin tuna, Thunnus thynnus (Linnaeus, 1758), inhabits the North Atlantic Ocean and the Mediterranean Sea and is considered to be an endangered species, largely through overfishing. Thus, the development of aquaculture practices independent of wild resources can provide an important contribution towards ensuring security and sustainability of this species in the longer-term. In order to provide a resource for ongoing studies, we have used 454 pyrosequencing technology to sequence a mixed-tissue normalized cDNA library, derived from adult individuals. Transcript sequences were used to develop a novel 15K Agilent oligo microarray for T. thynnus and comparative tissue gene expression profiles were inferred for gill, heart, liver, ovaries and testes.