Project description:Using histone H3 mutants designed so that they can only form a heterodimer, we studied the gene expression in a collection of mutants, comparing mutations to one histone H3 tail of a nucleosome compared to two histone H3 tails of a nucleosome.
Project description:The N-terminal tail of histone H2A shows evolutionary changes that parallel genome size and aid chromatin compaction. As genome size increases, so does the number of arginines. In contrast, serines corellate with small genomes. Examples for such changes are arginine in position 11 and serine in position 15. To test if these residues affect mRNA levels, we analysed gene expression profiles of S.cerevisiae strains containing either WT or mutant H2A. Yeast strains have endogenous histone H2A genes deleted and express plasmid born WT or mutant H2A. PolyA RNA of these strains was analyzed by single channel microarray hybridization. Three WT biological replicates provide the control. Two biological replicates of each of the mutants containing either R11, K11, carrying a deletion in S15 and the double mutant carrying both the deletion of S15 and an insertion of R11 are analysed.
Project description:The N-terminal tail of histone H2A shows evolutionary changes that parallel genome size and aid chromatin compaction. As genome size increases, so does the number of arginines. In contrast, serines corellate with small genomes. Examples for such changes are arginine in position 11 and serine in position 15. To test if these residues affect mRNA levels, we analysed gene expression profiles of S.cerevisiae strains containing either WT or mutant H2A.
Project description:The Mediator complex transmits activation signals from DNA bound transcription factors to the core transcription machinery. Genome wide localization studies have demonstrated that Mediator occupancy not only correlates with high levels of transcription, but that the complex also is present at transcriptionally silenced locations. We provide evidence that Mediator localization is guided by an interaction with histone tails, and that this interaction is regulated by their post-translational modifications. A quantitative, high-density genetic interaction map revealed links between Mediator components and factors affecting chromatin structure, especially histone deacetylases. Peptide binding assays demonstrated that pure wild type Mediator forms stable complexes with the tails of Histone H3 and H4. These binding assays also showed Mediator – histone H4 peptide interactions are specifically inhibited by acetylation of the histone H4 lysine 16, a residue critical in transcriptional silencing. Finally, these findings were validated by tiling array analysis, that revealed a broad correlation between Mediator and nucleosome occupancy in vivo, but a negative correlation between Mediator and nucleosomes acetylated at histone H4 lysine 16. Our studies show that chromatin structure and the acetylation state of histones are intimately connected to Mediator localization.
Project description:A series of yeast carrying K->R mutations in the histone H4 N-terminal tail were profiled by gene expression array in mid-log phase.
Project description:Total RNA samples from three replicate cultures of wild type and mutant yeast strains was isolated and expression profile done using Affymetrix arrays. Comparsion between the samples indicate how mutation in a single amino acid residue in histone H4 (H4R45H) affects gene expression in yeast. Such a mutation in histone H4 is known to generate a specific class of mutants called SWI/SNF independent (SIN) mutants, and the mutants were identified by their ability to carry out transcription in the absence of yeast chromatin remodeling complex SWI/SNF. SIN mutations are known to affect higher order chromatin structure and the comparative expression profile would help identification of genes which get affected by such altered chromatin landscape. Keywords: mutant analysis
Project description:Telomere chromatin structure is pivotal for maintaining genome stability by regulating the binding of telomere-associated proteins and inhibition of a DNA damage response. In yeast, the silent information regulator (Sir) proteins bind to terminal telomeric repeats and to subtelomeric X-elements resulting in histone deacetylation and transcriptional silencing. Herein, we show that sir2 mutant strains display a very specific loss of a nucleosome residing in the X-element. Most yeast telomeres contain an X-element and the nucleosome occupancy defect in sir2 mutants is remarkably consistent between different telomeres.