Project description:This series contains the gene expression data from urothelial bladder cancer samples from Swedish patients that were used to analyze metastatic sites. Included patients have a recurrence or distant metastasis before or after treatment with chemotherapy. Patients with only lymph-node metastases are not included. A previous series (GSE169455) contains data from all patients that recieved two or more cycles of neoadjuvant chemotherapy with curative intent. Patients in that series that developed distant recurrence are re-analyzed here. A few samples from a previous cystectomy series (GSE83586) are also included as re-analysis. In addition, the current series contains data from patients treated with palliative first-line chemotherapy, curative adjuvant chemotherapy, or < 2 cycles of neoadjuvant chemotherapy. Raw data should be adjusted in data processing for batch variables: Labeling batch and Labeling kit.
Project description:For patients with muscle-invasive bladder cancer, there are no biomarkers in clinical use that can identify patients that are sensitive or resistant to neoadjuvant chemotherapy. This study investigates how molecular subtypes impact pathological response and survival in 149 patients receiving preoperative cis-platin based chemotherapy by tumor classification using transcriptomic profiling and a 13-marker immunostaining panel. Furthermore, we explored to what extent gene expression signatures can predict chemotherapy response beyond molecular subtypes. We observed improved pathological response rates and survival outcomes for patients presenting with genomically unstable (GU) and urothelial-like (Uro) subtypes compared to the basal-squamous (BASQ) subtype following neoadjuvant chemotherapy and radical cystectomy. Also, SPP1, coding for osteopontin, displayed a clear subtype-dependent effect on chemotherapy response, confirmed at the protein level. Based on our findings, we hypothesize that urothelial cancer of the luminal-like GU- and Uro-subtypes are more responsive to cisplatin-based chemotherapy which may influence patient selection pending further research.
Project description:This SuperSeries is composed of the following subset Series:; GSE17536: Metastasis Gene Expression Profile Predicts Recurrence and Death in Colon Cancer Patients (Moffitt Samples); GSE17537: Metastasis Gene Expression Profile Predicts Recurrence and Death in Colon Cancer Patients (VMC Samples) Experiment Overall Design: Refer to individual Series
Project description:Background and Aims: Staging inadequately predicts metastatic risk in colon cancer patients. We used a gene expression profile derived from invasive murine colon cancer cells that were highly metastatic in an immunocompetent mouse model to identify colon cancer patients at risk for recurrence in a phase I, exploratory biomarker study. Methods: 55 colorectal cancer patients from Vanderbilt Medical Center (VMC) were used as the training dataset and 177 patients from the Moffitt Cancer Center were used as the independent dataset. The metastasis-associated gene expression profile developed from the mouse model was refined using comparative functional genomics in the VMC gene expression profiles to identify a 34-gene classifier associated with high risk of metastasis and death from colon cancer. A recurrence score derived from the biologically based classifier was tested in the Moffitt dataset. Results: A high score was significantly associated with increased risk of metastasis and death from colon cancer across all pathological stages and specifically in stage II and stage III patients. The recurrence score was shown to independently predict risk of cancer recurrence and death in both univariate and multivariate models. For example, among stage III patients, a high score translated to increased relative risk for cancer recurrence (hazard ratio = 4.7 (95% CI=1.566-14.05)). Furthermore, the recurrence score identified stage III patients whose five-year recurrence-free survival was >88% and for whom adjuvant chemotherapy did not provide improved survival. Conclusion: Our biologically based gene expression profile yielded a potentially useful classifier to predict cancer recurrence and death independently of conventional measures in colon cancer patients. Experiment Overall Design: Gene expression array differences between highly invasive mouse colon cancer cells and non-invasive colon cancer cells were used to develop a metastasis gene expression profile. It was refined using gene expression data from 55 patient (VMC) samples and trained using 177 patient (Moffitt) samples.
Project description:Analysis of a clinical urothelial cancer cohort for their spatial tryptic peptide composition in two different tissue types, tumor and stroma, and two tumor subtypes, muscle-infiltrating and non muscle-infiltrating tumors.
Project description:Background and Aims: Staging inadequately predicts metastatic risk in colon cancer patients. We used a gene expression profile derived from invasive murine colon cancer cells that were highly metastatic in an immunocompetent mouse model to identify colon cancer patients at risk for recurrence in a phase I, exploratory biomarker study. Methods: 55 colorectal cancer patients from Vanderbilt Medical Center (VMC) were used as the training dataset and 177 patients from the Moffitt Cancer Center were used as the independent dataset. The metastasis-associated gene expression profile developed from the mouse model was refined using comparative functional genomics in the VMC gene expression profiles to identify a 34-gene classifier associated with high risk of metastasis and death from colon cancer. A recurrence score derived from the biologically based classifier was tested in the Moffitt dataset. Results: A high score was significantly associated with increased risk of metastasis and death from colon cancer across all pathological stages and specifically in stage II and stage III patients. The recurrence score was shown to independently predict risk of cancer recurrence and death in both univariate and multivariate models. For example, among stage III patients, a high score translated to increased relative risk for cancer recurrence (hazard ratio = 4.7 (95% CI=1.566-14.05)). Furthermore, the recurrence score identified stage III patients whose five-year recurrence-free survival was >88% and for whom adjuvant chemotherapy did not provide improved survival. Conclusion: Our biologically based gene expression profile yielded a potentially useful classifier to predict cancer recurrence and death independently of conventional measures in colon cancer patients. Experiment Overall Design: Gene expression array differences between highly invasive mouse colon cancer cells and non-invasive colon cancer cells were used to develop a metastasis gene expression profile. It was refined using gene expression data from 55 patient (VMC) samples and trained using 177 patient (Moffitt) samples.
Project description:Background and Aims: Staging inadequately predicts metastatic risk in colon cancer patients. We used a gene expression profile derived from invasive murine colon cancer cells that were highly metastatic in an immunocompetent mouse model to identify colon cancer patients at risk for recurrence in a phase I, exploratory biomarker study. Methods: 55 colorectal cancer patients from Vanderbilt Medical Center (VMC) were used as the training dataset and 177 patients from the Moffitt Cancer Center were used as the independent dataset. The metastasis-associated gene expression profile developed from the mouse model was refined using comparative functional genomics in the VMC gene expression profiles to identify a 34-gene classifier associated with high risk of metastasis and death from colon cancer. A recurrence score derived from the biologically based classifier was tested in the Moffitt dataset. Results: A high score was significantly associated with increased risk of metastasis and death from colon cancer across all pathological stages and specifically in stage II and stage III patients. The recurrence score was shown to independently predict risk of cancer recurrence and death in both univariate and multivariate models. For example, among stage III patients, a high score translated to increased relative risk for cancer recurrence (hazard ratio = 4.7 (95% CI=1.566-14.05)). Furthermore, the recurrence score identified stage III patients whose five-year recurrence-free survival was >88% and for whom adjuvant chemotherapy did not provide improved survival. Conclusion: Our biologically based gene expression profile yielded a potentially useful classifier to predict cancer recurrence and death independently of conventional measures in colon cancer patients. Keywords: Functional genomics, metastatic colon cancer, mouse model, human colon cancer
Project description:Background and Aims: Staging inadequately predicts metastatic risk in colon cancer patients. We used a gene expression profile derived from invasive murine colon cancer cells that were highly metastatic in an immunocompetent mouse model to identify colon cancer patients at risk for recurrence in a phase I, exploratory biomarker study. Methods: 55 colorectal cancer patients from Vanderbilt Medical Center (VMC) were used as the training dataset and 177 patients from the Moffitt Cancer Center were used as the independent dataset. The metastasis-associated gene expression profile developed from the mouse model was refined using comparative functional genomics in the VMC gene expression profiles to identify a 34-gene classifier associated with high risk of metastasis and death from colon cancer. A recurrence score derived from the biologically based classifier was tested in the Moffitt dataset. Results: A high score was significantly associated with increased risk of metastasis and death from colon cancer across all pathological stages and specifically in stage II and stage III patients. The recurrence score was shown to independently predict risk of cancer recurrence and death in both univariate and multivariate models. For example, among stage III patients, a high score translated to increased relative risk for cancer recurrence (hazard ratio = 4.7 (95% CI=1.566-14.05)). Furthermore, the recurrence score identified stage III patients whose five-year recurrence-free survival was >88% and for whom adjuvant chemotherapy did not provide improved survival. Conclusion: Our biologically based gene expression profile yielded a potentially useful classifier to predict cancer recurrence and death independently of conventional measures in colon cancer patients. Keywords: Functional genomics, metastatic colon cancer, mouse model, human colon cancer