Project description:A number of autoimmunity-associated MHC class II proteins interact only weakly with the invariant chain-derived class II-associated invariant chain peptide (CLIP). CLIP dissociates rapidly from I-Ag7 even in the absence of DM, and this property is related to the type 1 diabetes-associated b57 polymorphism. We generated knock-in Non-obese Diabetic (NOD) mice with a single amino acid change in the CLIP segment of invariant chain in order to moderately slow CLIP dissociation from I-Ag7. These knock-in mice had a significantly reduced incidence of spontaneous type 1 diabetes and diminished islet infiltration by CD4 T cells, in particular T cells specific for fusion peptides generated by covalent linkage of proteolytic fragments within b cell secretory granules. Rapid CLIP dissociation enhanced presentation of such extracellular peptides, thus bypassing the conventional MHC class II antigen processing pathway. Autoimmunity-associated MHC class II polymorphisms therefore not only modify binding of self-peptides, but also alter the biochemistry of peptide acquisition.
Project description:Classical antigen processing/presentation mechanisms lead to the presentation of antigenic peptides derived from endogenous and exogenous sources for MHC class I and class II molecules, respectively. We show here that, unlike other class II, prevalent HLA-DP molecules whose chains encode Gly84 (DP84Gly) constitutively present endogenous peptides.
Project description:CD4+ T lymphocytes play a major role in the establishment and maintenance of immunity. They are activated by antigenic peptides derived from extracellular or newly synthesized (endogenous) proteins presented on the surface of antigen presenting cells (APCs) by the MHC-II molecules. The pathways leading to endogenous MHC-II presentation remain poorly characterized. We demonstrate here that the autophagy receptor, T6BP, influences both autophagy-dependent and -independent endogenous presentation of HIV- and HCMV-derived peptides. By studying the immunopeptidome of MHC-II molecules, we show that T6BP affects both the quantity and quality of peptides presented. T6BP silencing induces mislocalization of the MHC-II-loading compartments and a rapid degradation of the invariant chain (CD74) without altering the expression and internalization kinetics of MHC-II molecules. T6BP also controls the ER localization of the chaperone calnexin that we identified as a T6BP partner. Remarkably, calnexin silencing in APCs replicates the functional consequences of T6BP silencing: decreased CD4+ T cell activation and exacerbated CD74 degradation. Altogether, we unravel T6BP as a key player of the MHC-II-restricted endogenous presentation pathway and we propose one potential mechanism of action.
Project description:CD4+ T lymphocytes play a major role in the establishment and maintenance of immunity. They are activated by antigenic peptides derived from extracellular or newly synthesized (endogenous) proteins presented on the surface of antigen presenting cells (APCs) by the MHC-II molecules. The pathways leading to endogenous MHC-II presentation remain poorly characterized. We demonstrate here that the autophagy receptor, T6BP, influences both autophagy-dependent and -independent endogenous presentation of HIV- and HCMV-derived peptides. By studying the immunopeptidome of MHC-II molecules, we show that T6BP affects both the quantity and quality of peptides presented. T6BP silencing induces mislocalization of the MHC-II-loading compartments and a rapid degradation of the invariant chain (CD74) without altering the expression and internalization kinetics of MHC-II molecules. T6BP also controls the ER localization of the chaperone calnexin that we identified as a T6BP partner. Remarkably, calnexin silencing in APCs replicates the functional consequences of T6BP silencing: decreased CD4+ T cell activation and exacerbated CD74 degradation. Altogether, we unravel T6BP as a key player of the MHC-II-restricted endogenous presentation pathway and we propose one potential mechanism of action.
Project description:Assessing the self-peptides presented by susceptible major histocompatibility complex (MHC) molecules is crucial for evaluating the pathogenesis and therapeutics of tissue-specific autoimmune diseases. However, direct examination of such MHC-bound peptides displayed in the target organ remains largely impractical. Here, we demonstrate that the blood leukocytes from non-obese diabetic (NOD) mice presented peptide epitopes to autoreactive CD4 T cells. These peptides were bound to the autoimmune class II MHC molecule, I-Ag7, and originated from insulin B-chain and C-peptide. The presentation required a glucose challenge, which stimulated the release of insulin peptides from pancreatic islets. The circulating leukocytes, especially the B cells, promptly captured and presented these peptides. Although canonical intracellular processing of insulin was involved in the presentation, extracellular binding of catabolized insulin products to I-Ag7 gave rise to a unique pathogenic epitope. Administration of monoclonal antibodies recognizing insulin B-chain abolished the presentation and diminished diabetes incidence. Mass spectrometry analysis of the leukocyte MHC-II peptidomes revealed a series of beta cell derived peptides, with identical sequences to those previously in the islet MHC-II peptidome. Thus, the WBC peptidome echoes that found in islets and serves to identify immunogenic peptides in an otherwise inaccessible tissue.
Project description:Dendritic cells (DCs) process and present self and foreign antigens to induce tolerance or immunity. In vitro models suggest that induction of immunity is controlled by regulating the presentation of antigen, but little is known about how DCs control antigen presentation in vivo. To examine antigen processing and presentation in vivo we specifically targeted antigens to the two major subsets of DCs using chimeric monoclonal antibodies. Unlike CD8+ DCs that express the cell surface protein CD205, CD8- DCs, which are positive for the 33D1 antigen, are specialized for presentation on MHC class II. This difference in antigen processing is intrinsic to the DC subsets and associated with increased expression of proteins associated with MHC processing. Experiment Overall Design: This study includes data from cell sort purified dendritic cells, B cells and CD4 and CD8 T cells. The genearray was performed to identify the transmembrane molecule recognized by the antibody 33D1. The antibody 33D1 binds specifically to CD8-CD11cHigh DCs in the spleen. Therfore the data set was reduced in this way that all molecules that are expressed either in CD8=CD11cHigh DCs, B cells and T cells were diminished of the CD8+CD11cHigh DC data set. This Genearray was also used to analyze MHC class I and MHC class II associated moelcules as the DC subsets differ in the antigen presentation. Each Series consists of 3 individuall samples
Project description:The immune response against tuberculosis relies, at least in part, on CD4+ T cells. Protective vaccines require the induction of antigen-specific CD4+ T cells via mycobacterial peptides presented by MHC class-II in infected macrophages. We have purified MHC class-I and MHC-II peptides and analysed them by mass spectrometry. We have successfully identified 97 mycobacterial peptides presented by MHC-II and 54 presented by MHC-I, from 76 and 41 antigens, respectively. The sequences of selected peptides were confirmed by spectral match validation and immunogenicity evaluated by IFN-gamma ELISpot against peripheral blood mononuclear cells from volunteers vaccinated with BCG, M.tb latently infected subjects or patients with tuberculosis disease. Three antigens were expressed in viral vectors, and evaluated as vaccine candidates alone or in combination in a murine aerosol M.tb challenge model. When delivered in combination, the three candidate vaccines conferred significant protection in the lungs and spleen compared with BCG alone, demonstrating proof-of-concept for this unbiased approach to identifying novel candidate antigens.
Project description:Loss of the MHC Class II accessory molecule H2-O has been shown to alter the peptide repertoir presented by MHC Class II molecules. Using scRNA-Seq we interrogated what outcomes altered antigen presentation was having on the naïve CD4 T cell milieu.
Project description:Immunoglobulin gene rearrangement and somatic hypermutation have the potential to create neoantigens in non-Hodgkin B cell lymphoma. However, the presentation of these putative immunoglobulin neoantigens by B cell lymphomas has not been proven. We used MHC immunoprecipitation followed by liquid chromatography and tandem mass spectrometry (LC-MS/MS) to define antigens presented by follicular lymphomas (FL), chronic lymphocytic leukemias (CLL), diffuse large B cell lymphoma (DLBCL) and mantle cell lymphomas (MCL). We found presentation of the clonal immunoglobulin molecule, including neoantigens by both class I and class II MHC, though more commonly in class II MHC. To determine whether B cell activation could promote presentation of immunoglobulin neoantigens, we used a toll-like receptor 9 (TLR9) agonists to upregulate expression of MHC-II. This resulted in enhanced class II MHC presentation of the immunoglobulin variable region including neoantigens. These findings demonstrate that immunoglobulin neoantigens are presented across most subtypes of B cell lymphomas. Activation of lymphoma cells to upregulate antigen presentation boosts presentation of immunoglobulin neoantigens and represents a strategy for augmenting lymphoma immunotherapies.