Project description:Expression profiling of mRNA abundance in the adult mouse olfactory epithelium during replacement of OSNs forced by the bilateral ablation of the olfactory bulbs. The experiment was done on 6 week old male C57Bl/6 mice. Olfactory epithelium tissue samples were collected on days 1, 5, and 7 after bulbectomy. The cellular processes activated by bulbectomy include apoptosis of mature olfactory sensory neurons, infiltration of macrophages and dendritic cells, stimulation of proliferation of basal cell progenitors, and differentation of new sensory neurons.
Project description:We have identified a replication-independent histone variant, Hist2h2be (referred to herein as H2be), which is expressed exclusively by olfactory chemosensory neurons. Levels of H2BE are heterogeneous among olfactory neurons, but stereotyped according to the identity of the co-expressed olfactory receptor (OR). Gain- and loss-of-function experiments demonstrate that changes in H2be expression affect olfactory function and OR representation in the adult olfactory epithelium. We show that H2BE expression is reduced by sensory activity and that it promotes neuronal cell death, such that inactive olfactory neurons display higher levels of the variant and shorter life spans. Post-translational modifications (PTMs) of H2BE differ from those of the canonical H2B, consistent with a role for H2BE in altering transcription. We propose a physiological function for H2be in modulating olfactory neuron population dynamics to adapt the OR repertoire to the environment. The objective of generating this dataset was to analyze the effects of H2be loss of function on gene expression in the main olfactory epithelium of 6-month old mice. This dataset compares gene expression in wild type and H2be-KO main olfactory epithelium (MOE) samples. There are six replicates for each genotype (equal mixture of males and females).
Project description:Transcriptome analysis of RNA samples from mice olfactory epithelium Gene expression profiling in the olfactory epithelium was performed to obtain a better understanding of the processes mediating cell replacement. We analyzed epitheliual tissue from 3 adult male mice at 5 days following ipsilateral olfactory bulbectomy (OBX). Total RNA was isolated and anlayzed using the Affymetrix Mouse Exon 1.0 ST platform. Array data was processed by Affymetrix Exon Array Computational Tool.
Project description:We have identified a replication-independent histone variant, Hist2h2be (referred to herein as H2be), which is expressed exclusively by olfactory chemosensory neurons. Levels of H2BE are heterogeneous among olfactory neurons, but stereotyped according to the identity of the co-expressed olfactory receptor (OR). Gain- and loss-of-function experiments demonstrate that changes in H2be expression affect olfactory function and OR representation in the adult olfactory epithelium. We show that H2BE expression is reduced by sensory activity and that it promotes neuronal cell death, such that inactive olfactory neurons display higher levels of the variant and shorter life spans. Post-translational modifications (PTMs) of H2BE differ from those of the canonical H2B, consistent with a role for H2BE in altering transcription. We propose a physiological function for H2be in modulating olfactory neuron population dynamics to adapt the OR repertoire to the environment. The objective of generating this dataset was to analyze the effects of the ectopic over-expression of H2be (expressed from an Omp-promoter-driven transgene and tagged with a FLAG epitope) on gene expression in the main olfactory epithelium of 5-week old mice. This dataset compares gene expression in wild type and H2be-GF main olfactory epithelium (MOE) samples. There are 6 replicates for WT and 4 replicates for H2be-GF (equal mixture of males and females).
Project description:We have identified a replication-independent histone variant, Hist2h2be (referred to herein as H2be), which is expressed exclusively by olfactory chemosensory neurons. Levels of H2BE are heterogeneous among olfactory neurons, but stereotyped according to the identity of the co-expressed olfactory receptor (OR). Gain- and loss-of-function experiments demonstrate that changes in H2be expression affect olfactory function and OR representation in the adult olfactory epithelium. We show that H2BE expression is reduced by sensory activity and that it promotes neuronal cell death, such that inactive olfactory neurons display higher levels of the variant and shorter life spans. Post-translational modifications (PTMs) of H2BE differ from those of the canonical H2B, consistent with a role for H2BE in altering transcription. We propose a physiological function for H2be in modulating olfactory neuron population dynamics to adapt the OR repertoire to the environment. The objective of generating this dataset was to analyze the occupancy of H2BE protein in the vicinity of gene promoters throughout the genome, relative to histone H3, in olfactory sensory neurons within the main olfactory epithelium (MOE). This dataset analyzes the occupancy of FLAG-H2BE protein in the vicinity of gene promoters throughout the genome, relative to histone H3, in olfactory sensory neurons within the main olfactory epithelium (MOE) of Flag-H2be transgenic mice, which express a FLAG-tagged version of H2BE from the H2be promoter. There are 2 replicates for each ChIP (FLAG and H3).
Project description:We have identified a replication-independent histone variant, Hist2h2be (referred to herein as H2be), which is expressed exclusively by olfactory chemosensory neurons. Levels of H2BE are heterogeneous among olfactory neurons, but stereotyped according to the identity of the co-expressed olfactory receptor (OR). Gain- and loss-of-function experiments demonstrate that changes in H2be expression affect olfactory function and OR representation in the adult olfactory epithelium. We show that H2BE expression is reduced by sensory activity and that it promotes neuronal cell death, such that inactive olfactory neurons display higher levels of the variant and shorter life spans. Post-translational modifications (PTMs) of H2BE differ from those of the canonical H2B, consistent with a role for H2BE in altering transcription. We propose a physiological function for H2be in modulating olfactory neuron population dynamics to adapt the OR repertoire to the environment. The objective of generating this dataset was to analyze the effects of H2be loss of function on gene expression changes in the main olfactory epithelium as a result of activity deprivation through unilateral naris occlusion (UNO).
Project description:Expression profiling of mRNA abundance in the adult mouse olfactory epithelium during replacement of OSNs forced by the bilateral ablation of the olfactory bulbs. The experiment was done on 6 week old male C57Bl/6 mice. Olfactory epithelium tissue samples were collected on days 1, 5, and 7 after bulbectomy. The cellular processes activated by bulbectomy include apoptosis of mature olfactory sensory neurons, infiltration of macrophages and dendritic cells, stimulation of proliferation of basal cell progenitors, and differentation of new sensory neurons. Keywords = olfaction Keywords = apoptosis Keywords = immune response Keywords = neurogenesis Keywords = gene silencing Keywords = microarray Keywords = transcription factor Keywords = spermatogenesis Keywords: time-course
Project description:We have identified a replication-independent histone variant, Hist2h2be (referred to herein as H2be), which is expressed exclusively by olfactory chemosensory neurons. Levels of H2BE are heterogeneous among olfactory neurons, but stereotyped according to the identity of the co-expressed olfactory receptor (OR). Gain- and loss-of-function experiments demonstrate that changes in H2be expression affect olfactory function and OR representation in the adult olfactory epithelium. We show that H2BE expression is reduced by sensory activity and that it promotes neuronal cell death, such that inactive olfactory neurons display higher levels of the variant and shorter life spans. Post-translational modifications (PTMs) of H2BE differ from those of the canonical H2B, consistent with a role for H2BE in altering transcription. We propose a physiological function for H2be in modulating olfactory neuron population dynamics to adapt the OR repertoire to the environment. The objective of generating this dataset was to analyze the effects of H2be loss of function on gene expression changes in the main olfactory epithelium as a result of activity deprivation through unilateral naris occlusion (UNO). This dataset compares gene expression in wild type and H2be-KO main olfactory epithelium (MOE) samples from 5-week old mice that were subjected to unilateral naris occlusion (UNO) for 3 weeks starting from 2 weeks of age. Samples consist of MOE halves that were dissected and carefully removed from the medial bone. Each sample contains tissue from 2 mice (1 female and 1 male). There are three replicates for each genotype (H2be-KO or WT) and UNO side (open or closed) combination.
Project description:We have identified a replication-independent histone variant, Hist2h2be (referred to herein as H2be), which is expressed exclusively by olfactory chemosensory neurons. Levels of H2BE are heterogeneous among olfactory neurons, but stereotyped according to the identity of the co-expressed olfactory receptor (OR). Gain- and loss-of-function experiments demonstrate that changes in H2be expression affect olfactory function and OR representation in the adult olfactory epithelium. We show that H2BE expression is reduced by sensory activity and that it promotes neuronal cell death, such that inactive olfactory neurons display higher levels of the variant and shorter life spans. Post-translational modifications (PTMs) of H2BE differ from those of the canonical H2B, consistent with a role for H2BE in altering transcription. We propose a physiological function for H2be in modulating olfactory neuron population dynamics to adapt the OR repertoire to the environment. The objective of generating this dataset was to analyze the occupancy of H2BE protein in the vicinity of gene promoters throughout the genome, relative to histone H3, in olfactory sensory neurons within the main olfactory epithelium (MOE).
Project description:We have identified a replication-independent histone variant, Hist2h2be (referred to herein as H2be), which is expressed exclusively by olfactory chemosensory neurons. Levels of H2BE are heterogeneous among olfactory neurons, but stereotyped according to the identity of the co-expressed olfactory receptor (OR). Gain- and loss-of-function experiments demonstrate that changes in H2be expression affect olfactory function and OR representation in the adult olfactory epithelium. We show that H2BE expression is reduced by sensory activity and that it promotes neuronal cell death, such that inactive olfactory neurons display higher levels of the variant and shorter life spans. Post-translational modifications (PTMs) of H2BE differ from those of the canonical H2B, consistent with a role for H2BE in altering transcription. We propose a physiological function for H2be in modulating olfactory neuron population dynamics to adapt the OR repertoire to the environment. The objective of generating this dataset was to analyze the effects of H2be loss of function on gene expression in the main olfactory epithelium of 6-month old mice.