Project description:Horsfieldia kingii is a member of Myristicaceae. The H. kingii chloroplast genome is found to be 155,655?bp in length and has a base composition of A (30.03%), G (19.52%), C (19.72%), and T (30.73%). The genome contained two short inverted repeat (IRa and IRb) regions (48,052?bp) which were separated by a large single copy (LSC) region (86,912?bp) and a small single copy (SSC) region (20,691?bp). The genome encodes 123 unique genes, including 85 protein-coding genes, 27 transfer RNA (tRNA) genes, and 8 ribosomal RNA (rRNA) genes. Further, complete chloroplast sequence of H. kingii was aligned together with other 2 species of Myristicaceae and other 5 basal angiosperms species which have reported the complete chloroplast sequence. This complete chloroplast genome will provide valuable information for the development of DNA markers for future species resource development and phylogenetic analysis of H. kingii.
Project description:The DNA isolated from 44 either frozen or FFPE Neuroendocrine Neoplasm (NEN) was analysed by NGS, to identify genes more likely to be subject to sequence variations among 523 cancer-related ones.
Project description:Plasma DNA from 558 malignancies, 263 benign and borderline tumors and 367 healthy control samples were collected and subjected to random short-gun whole genome sequencing.
Project description:This study aims to investigate the DNA methylation patterns at transcription factor binding regions and their evolutionary conservation with respect to binding activity divergence. We combined newly generated bisulfite-sequencing experiments in livers of five mammals (human, macaque, mouse, rat and dog) and matched publicly available ChIP-sequencing data for five transcription factors (CEBPA, HNF4a, CTCF, ONECUT1 and FOXA1). To study the chromatin contexts of TF binding subjected to distinct evolutionary pressures, we integrated publicly available active promoter, active enhancer and primed enhancer calls determined by profiling genome wide patterns of H3K27ac, H3K4me3 and H3K4me1.