Project description:Notexin from Notechis scutatus scutatus snake venom was subjected to tyrosine modification with p-nitrobenzenesulphonyl fluoride (NBSF), and four modified derivatives were separated by h.p.l.c. The results of amino acid analysis and sequence determination revealed that only Tyr-7, Tyr-70 and Tyr-77 were modified in notexin. Modification of Tyr-7 resulted in decreases in lethal toxicity and enzymic activity by 70.2% and 22.7% respectively. Conversely, modification of Tyr-77 caused a 1.8-fold increase in enzymic activity, in contrast with the loss of 52.5% of lethality. A drastic decrease in lethal toxicity was observed when both Tyr-7 and Tyr-70 were modified, whereas the enzymic activity decreased by only 35.8%. Likewise, the derivative in which Tyr-7 and Tyr-77 were modified retained 44.4% of enzymic activity, but showed a marked decrease in lethal toxicity. It is obvious that modification of tyrosine residues causes a decrease in lethal toxicity of notexin, which does not directly correlate with the change in enzymic activity. On the other hand, the antigenicity of NBS derivatives remained unchanged. The modified derivatives retained their affinity for Ca2+, indicating that the modified tyrosine residues did not participate in Ca2+ binding. These results indicate that modification of tyrosine residues can differentially influence the enzymic activity and lethal toxicity of notexin, and suggest that notexin might possess two functional sites, one being responsible for the catalytic activity and the other associated with its lethal effect.
Project description:Like most ray-finned fishes (Actinopterygii), pipefishes (Syngnathoidei) feed by suction. Most pipefishes reach their prey by a rapid dorso-rotation of the head. In the present study, we analysed the feeding kinematics of the razor fish, Centriscus scutatus, and of the greater pipefish, Syngnathus acus in detail. We found capture times of as little as 4-6ms for C. scutatus and 6-8ms for S. acus. We then hypothesized that the long snout of pipefishes is optimal for such fast feeding. To test this, we implemented in a mathematical model the following considerations. To reach the prey as fast as possible, a low moment of inertia increases the head's angular speed, whereas a long snout decreases the angle over which the head must be turned. The model accurately predicted the snout lengths of a number of pipefishes. We found that the optimal snout length, with which a prey will be reached fastest, is inversely related to its cross-section. In spite of the small cross-section, the development of a long snout can be an evolutionary advantage because this reduces the time to approach the prey.