Project description:MicroRNAs (miRNAs) are a class of endogenous non-coding small RNAs that regulate targeted mRNAs by degrading or repressing translation, considered as post-transcrption regulators. So far, a large number of miRNAs have been discovered in model plants, but little information is available on miRNAs in banana. In this study, by sequencing the small RNA (sRNA) transcriptomes of Fusarium wilt resistant and susceptible banana varieties, 139 members in 38 miRNA families were discovered, and six out of eight new miRNAs were confirmed by RT-PCR. According to the analysis of sRNA transcriptome data and qRT-PCR verification, some miRNAs were differentially expressed between Fusarium wilt resistant and susceptible banana varieties. Two hundred and ninety-nine and 31 target genes were predicted based on the draft maps of banana B genome and Fusarium oxysporum (FOC1, FOC4) genomes respectively. Specifically, two important pathogenic genes in Fusarium oxysporum genomes, feruloyl esterase gene and proline iminopeptidase gene, were targeted by banana miRNAs. These novel findings may provide a new strategy for the prevention and control of Fusarium wilt in banana.
Project description:Gene expression analysis of chrysanthemum infected with three different viruses including Cucumber mosaic virus, Tomato spotted wilt virus, and Potato virus X have been performed using the chrysanthemum 135K microarray.
Project description:Gene expression analysis of chrysanthemum infected with three different viruses including Cucumber mosaic virus, Tomato spotted wilt virus, and Potato virus X have been performed using the chrysanthemum 135K microarray. Mock and each virus infected chrysanthemum plants were subjected for microarray analysis.
Project description:Purpose: Molecular analysis of chickpea-Foc interaction; Methods: Four LongSAGE libraries of wilt-resistant and wilt-susceptible chickpea cultivars prepared after Foc inoculation and sequenced using Ion Torrent PGM. Results: Transcriptome analyses revealed expression of several plant defense and pathogen virulence genes with their peculier expression patterns in wilt-resistant and wilt-susceptible chickpea cultivars. Conclusion: The study identified several candidate Foc resistant genes, which can be used for crop improvement after their functional validation.
Project description:Background: The soil environment is responsible for sustaining most terrestrial plant life on earth, yet we know surprisingly little about the important functions carried out by diverse microbial communities in soil. Soil microbes that inhabit the channels of decaying root systems, the detritusphere, are likely to be essential for plant growth and health, as these channels are the preferred locations of new root growth. Understanding the microbial metagenome of the detritusphere and how it responds to agricultural management such as crop rotations and soil tillage will be vital for improving global food production. Methods: The rhizosphere soils of wheat and chickpea growing under + and - decaying root were collected for metagenomics sequencing. A gene catalogue was established by de novo assembling metagenomic sequencing. Genes abundance was compared between bulk soil and rhizosphere soils under different treatments. Conclusions: The study describes the diversity and functional capacity of a high-quality soil microbial metagenome. The results demonstrate the contribution of the microbiome from decaying root in determining the metagenome of developing root systems, which is fundamental to plant growth, since roots preferentially inhabit previous root channels. Modifications in root microbial function through soil management, can ultimately govern plant health, productivity and food security.