Project description:To elucidate the underlying mechanisms of pro-inflammatory diet in regulating intestinal inflammation. We performed gene expression profiling analysis using data obtained from RNA-seq of colon tissues from mice treatment with or without pro-inflammatory diet.
Project description:Diet is a major factor determining gut microbiota composition and perturbances in this complex ecosystem are associated with the inflammatory bowel disease (IBD). Here, we used gnotobiotic approach to analyze, how interaction between diet rich in proteins and gut microbiota influences the sensitivity to intestinal inflammation in murine model of ulcerative colitis. We found that diet rich in animal protein (aHPD) exacerbates acute dextran sulfate sodium (DSS)-induced colitis while diet rich in plant protein (pHPD) does not. The deleterious effect of aHPD was also apparent in chronic DSS colitis and was associated with distinct changes in gut bacteria and fungi. Therefore, we induced acute DSS-colitis in germ-free mice and transferred gut microbiota from aCD or aHPD fed mice to find that this effect requires presence of microbes and aHPD at the same time. The aHPD did not change the number of regulatory T cells or Th17 cells and still worsened the colitis in immuno-deficient RAG2 knock-out mice suggesting that this effect was not dependent on adaptive immunity. The pro-inflammatory effect of aHPD was, however, abrogated when splenic macrophages were depleted with clodronate liposomes. This treatment prevented aHPD induced increase in colonic Ly-6Chigh pro-inflammatory monocytes, but the ratio of resident Ly-6C-/low macrophages was not changed. These data show that the interactions between dietary protein of animal origin and gut microbiota increase sensitivity to intestinal inflammation by promoting pro-inflammatory response of monocytes.
| S-EPMC6497971 | biostudies-literature
Project description:Pro-inflammatory diet exacerbates colitis and alters gut microbiota
Project description:We show that oxidized LA, rather than LA itself,exacerbates colitis via Toll-like receptor 4 (TLR4)- and gut microbiota-dependent mechanisms.Administration of a diet containing oxidized LA, at low human-consumption levels, increases the severity of colitis and exacerbates the development of colorectal tumorigenesis in mice.
Project description:The spider venom-derived peptide GsMTx4 specifically inhibits mechanosensory ion channels. It has been reported that GsMTx4 plays an immunoregulatory role in several inflammatory conditions. Therefore, we administrated GsMTx4 to mice with dextran sodium sulfate (DSS)-induced acute colitis, to explore whether it regulates inflammatory responses in colitis.
Project description:Background: Accumulating evidence shows that high fat diet is closely associated with inflammatory bowel disease. However, the effects and underlying mechanisms of maternal high fat diet (MHFD) on the susceptibility of offspring to colitis in adulthood lacks confirmation. Methods: C57BL/6 pregnant mice were given either a high fat (60 E% fat, MHFD group) or control diet [10 E% fat, maternal control diet (MCD) group] during gestation and lactation. The intestinal development, mucosal barrier function, microbiota, and mucosal inflammation of 3-week old offspring were assessed. After weaning all mice were fed a control diet until 8 weeks of age when the microbiota was analyzed. Offspring were also treated with 2% DSS solution for 5 days and the severity of colitis was assessed. Results: The offspring in MHFD group were significantly heavier than those in MCD group only at 2-4 weeks of age, while no differences were found in the body weight between two groups at other measured time points. Compared with MCD group, MHFD significantly inhibited intestinal development and disrupted barrier function in 3-week old offspring. Although H&E staining showed no obvious microscopic inflammation in both groups of 3-week old offspring, increased production of inflammatory cytokines indicated low-grade inflammation was induced in MHFD group. Moreover, fecal analysis of the 3-week old offspring indicated that the microbiota compositions and diversity were significantly changed in MHFD group. Interestingly after 5 weeks consumption of control diet in both groups, the microbiota composition of offspring in MHFD group was still different from that in MCD group, although the bacterial diversity was partly recovered at 8 weeks of age. Finally, after DSS treatment in 8-week old offspring, MHFD significantly exacerbated the severity of colitis and increased the production of proinflammatory cytokine. Conclusions: Our data reveal that MHFD in early life can inhibit intestinal development, induce dysbiosis and low-grade inflammation and lead to the disruption of intestinal mucosal barrier in offspring, and enhance DSS-induced colitis in adulthood.
Project description:Aging exacerbates neuromuscular junction disruption after injury that stimulates pro-inflammatory and diminishes pro-regenerative factor expression in macrophages and fibroadipogenic progenitors.
Project description:Objective: In this study, we aimed to evaluate the anti-inflammatory properties of nicotine and anatabine in a dextran sulfate sodium (DSS) mouse model of ulcerative colitis (UC). Methods: C57BL/6 male mice (10 groups with 8 animals each) were orally administered nicotine at a concentration of 5 or 20 mg/kg body weight or anatabine at a concentration of 5 or 20 mg/kg body weight for a total of 21 days. Colitis was induced by oral administration of 3.5% DSS in drinking water ad libitum during days 14–21. Colonic samples were collected for transcriptomic analysis and multi-analyte profiling (MAP). Results: Oral administration of anatabine, but not nicotine, reduced the clinical symptoms of DSS-induced colitis. The result of gene expression analysis suggested that anatabine had a restorative effect on global DSS-induced gene expression profiles, while nicotine only had limited effects. Accordingly, MAP findings revealed that anatabine reduced the colonic abundance of DSS-associated cytokines and increased IL‑10 abundance. Conclusions: Our results support the reduction of inflammatory effects by anatabine in the DSS mouse model of UC.