Project description:To investigate the abnormal gene expression in Osimertinib Resistance lung cancer cell line, We performed gene expression profiling analysis using data obtained from RNA-seq of PC9 cell line and PC9-OR cell line.
Project description:To find different gene expression signature between PC9 cells and its resistant cell line established by mild-TKI treatment, we did microarray analyses.
Project description:Analysis of gefitinib short-term resistance at gene expression level. The hyposthesis tested in the present study was that short-term resistance towards gefitinib in NSCLC cells influences pathways that associates with resistance towards EGFR-TKI treatment. Results provide important information of the response of EGFR mutant NSCLC cells to gefitinib and also to resistance towards gefitinib resistance, up-or down-regulated specific resistance pathways and cellular functions. Total RNA obtained from PC9 cell line (n=3), co-cultured PC9 (with MRC-5 cells)(n=3), gefitinib treated (0.5µM) PC9 (n=3), and co-cultured (MRC-5) + gefitinib treated PC9 cells (n=3) for 48h after gefitinib treatment
Project description:The non-small cell lung carcinoma (NSCLC) PC9 cell line is an established preclinical model for tyrosine kinase inhibitors. To better understand gene expression changes in cells that survived the inhibitor treatment, we treated the EGFR-mutant PC9 cells with erlotinib, isolated RNA, and performed RNA-seq analysis. We were able to identify genes that are differentially expressed in erlotinib-treated cells compared to untreated. The results of this study will be integrated with single cell RNA-seq to address the utility of bulk RNA versus single cell RNA strategies in identifying biomarkers of drug resistance.
Project description:The epigenetic regulator LSD1 is overepxpressed in lung adenocarcinoma (LUAD). HCI-2509 a LSD1 inhibitor leads to growth arrest in in vitro tumor models. To identify the underlying molecular mechanims behind LSD1 overexpression, we examined the gene expression patterns using microarray in the LUAD cell line PC9 after HCI-2509 treatment
Project description:The non-small cell lung carcinoma (NSCLC) PC9 cell line is an established preclinical model for tyrosine kinase inhibitors. Using PC9 cells, we generated EGFR-mutant lung cancer xenografts to study the differences in response between individual cells and cell populations. We performed treatment of PC9 xenograft tumors with the combination of osimertinib and crizotinib as well as single drugs, followed by Drop-seq. The addition of crizotinib was guided by our previous data in PC9 grown in cell culture that identified an erlotinib-resistant drug population sensitive to crizotinib. The results of the xenograft study show that combination treatment targets specific osimertinib-tolerant cell populations but leaves a subset of the population that is tolerant to the combo. Each cell subpopulation is characterized by specific molecular signatures. The results of our study help to address emerging drug resistance that limits clinical usefulness of targeted strategies, particularly in NSCLC.
Project description:Targeting drug tolerant persister (DTP) cells may present a therapeutic opportunity to eliminate residual surviving tumor cells and impede relapse. We sought to identify therapeutically exploitable vulnerabilities in DTP cells using the EGFR-mutant non-small cell lung cancer cell line PC9 as an experimental model. Here we provide RNAseq gene expression profiling data generated from parental PC9 cells compared to PC9 DTP cells generated from nine days of treatment with 2 uM osimertinib. These data can be used to identify genes and pathways which are upregulated in DTP cells, revealing potential therapeutic targets.
Project description:The non-small cell lung carcinoma (NSCLC) PC9 cell line is an established preclinical model for tyrosine kinase inhibitors. To be able to better understand the differences in response between individual cells, we performed treatment of PC9 cells grown in cell culture with erlotinib followed by Drop-seq. We were able to clearly distinguish cells that were treated with the drug for five different time points from untreated cells, and we discovered different cell populations within the treated cells, likely reflecting heterogeneity of drug resistant cells. We were able to identify specific biomarkers, as preferentially expressed genes, for each cell population. The results of our study will address preexisting and acquired drug resistance that limits clinical usefulness of targeted strategies, particularly in NSCLC.
Project description:The non-small cell lung carcinoma (NSCLC) PC9 cell line is an established preclinical model for tyrosine kinase inhibitors. To be able to better understand the differences in response between individual cells to drug removal after continuous treatment, we performed treatment of PC9 cells grown in cell culture with erlotinib followed by Drop-seq. We were able to clearly distinguish cells that were treated with the drug, removed from the drug and then re-treated with the same drug, and we discovered different cell populations within the treated cells, likely reflecting heterogeneity of drug resistant cells. We were able to identify specific biomarkers, as preferentially expressed genes, for each cell population. The results of our study will address drug resistance that limits clinical usefulness of targeted strategies, particularly in NSCLC.