Project description:BACKGROUND. Human prostate cancer LNCaP and PC-3 cell lines have been extensively used as prostate cancer cell models to study prostate cancer progression and to develop therapeutic agents. Although LNCaP and PC-3 cells are generally assumed to represent early and late stages of prostate cancer development, respectively, there is limited information regarding comprehensive gene expression patterns between these two cells lines and relating these cells to prostate cancer progression based on their gene expression. METHODS. Comprehensive gene expression analysis was performed in LNCaP and PC-3 cells. Total RNA was isolated from cultured cells and hybridized to Illumina human Ref-8 version 3 BeadChips representing 24,526 transcripts. Bioinformatics approach was applied to identify genes, their functional roles and interaction networks that are unique in either LNCaP or PC-3 cells. RESULTS. We observed large differences in gene expression between LNCaP and PC-3 cells.Using robust statistical analysis and very high significance criteria to identify tractable number of genes 115 and 188 genes were identified uniquely expressed in LNCaP and PC-3 cells, respectively. Genes uniquely expressed in LNCaP cells contained UDP-glucosyltransferases as a signature for this cell line. This cell line demonstrated upregulation of various metabolic pathways on gene expression level. Talα/β, GATA-1 and c-Myc/Max were identified by in silico analysis as possible transcription factors regulating unique LNCaP genes. PC-3 cells were characterized by cytosceleton-related genes, keratins in particular. Several other well known genes (VEGFC, IL8, TGFβ2 and others) scattered throughout literature were identified and summarized in the discussion. CONCLUSIONS. This study demonstrated that LNCaP and PC-3 cells represent two distinct prostate cancer cell lineages. LNCaP cells retain many prostate cell specific properties, whereas PC-3 cells have acquired more aggressive bone-like characteristics following bone metastasis and show little resemblance to prostate cells. Microarray studies confirmed previously published results and provided more information between these two prostate cancer cell lines. Future studies need to consider their similarities and differences in gene expression between localized and metastasized prostate cancer.
Project description:Transcriptional profiling of human prostate cancer cell line LNCaP treated with Metformin or AICAR compared to control non-stimulated LNCaP.
Project description:We generated and characterized an androgen-independent LNCaP-AI cell line by long-term culture of androgen-dependent LNCaP cells in RPMI-1640 medium containing charcoal-stripped serum. This approach used to generate the line mimics the castration resistant condition for treating prostate cancer, supporting the relevance of the LNCAP-AI cell line to Castration Resistant Prostate Cancer.
Project description:To identify genomic regions which display concordant gene expression in prostate cancer, we performed expression profiling of normal prostate epithelial cells (PrEC) and the prostate cancer cell line LNCaP. These expression arrays were integrated ChIP-on-chip studies of active and repressive epigenetic marks in same cells to discover and characterise regions of Long Range Epigenetic Silencing (LRES) in prostate cancer.
Project description:We report that the adaptor protein, paxillin, regulates some androgen responsive genes in the castration sensitive prostate cancer cell line, LNCaP.
Project description:To identify genomic regions which display concordant epigenetics alterations in prostate cancer, we performed MeDIP and ChIP-on-chip profiling of normal prostate epithelial cells (PrEC) and the prostate cancer cell line LNCaP. These promoter arrays were integrated with expression arrays of the same cells to discover and characterise regions of Long Range Epigenetic Silencing (LRES) in prostate cancer.
Project description:As we clarified before, the FOXP3 gene is an X-linked tumor suppressor gene of both human and mouse. We also clarified that the ERBB2, SKP2 and p21 genes were transcriptionally under control of FOXP3 in human epithelial cells. In order to further clarify the FOXP3 down stream targets in human cancer cells, we conducted a microarray analysis of FOXP3-induced gene expression profiling. A human prostate cancer cell line, LNCaP, was transfected either with a FOXP3-eGFP expressing vector or an eGFP-expressing vector. After 48 hrs of cell culture, we isolated eGFP-positive LNCaP cells by FACS sorting, and then total RNA from those cells were extracted by Qiagen's RNeasy column and they were applied to Affymetrix Human U133 2.0 array according to the manufacture's protocol. We clarified as yet unknown FOXP3 target genes in human prostate epithelial cells by this analysis.