Project description:Pressure overload-induced cardiac hypertrophy was examined in IL-18 knockout and littermate control mice. Experiment Overall Design: 4 groups with RNA pooled from 5-6 per group. Role of IL-18 on gene expression in cardiac hypertrophy induced by pressure overload (transaortic constriction)
Project description:Pressure overload-induced cardiac hypertrophy was examined in IL-18 knockout and littermate control mice. Keywords: genetic modification / disease model
Project description:Atherosclerosis and pressure overload are major risk factors for the development of heart failure in patients. Cardiac hypertrophy often precedes the development of heart failure. However, underlying mechanisms are incompletely understood. To investigate pathomechanisms underlying the transition from cardiac hypertrophy to heart failure we used experimental models of atherosclerosis- and pressure overload-induced cardiac hypertrophy and failure, i.e. apolipoprotein E (apoE)-deficient mice, which develop heart failure at an age of 18 months, and non-transgenic C57BL/6J (B6) mice with heart failure triggered by 6 months of pressure overload induced by abdominal aortic constriction (AAC). The development of heart failure was monitored by echocardiography, invasive hemodynamics and histology. The microarray gene expression study of cardiac genes was performed with heart tissue from failing hearts relative to hypertrophic and healthy heart tissue, respectively. The microarray study revealed that the onset of heart failure was accompanied by a strong up-regulation of cardiac lipid metabolism genes involved in fat synthesis, storage and oxidation. Microarray gene expression profiling was performed with heart tissue isolated from (i) 18 month-old apoE-deficient mice relative to age-matched non-transgenic C57BL/6J (B6) mice, (ii) 6 month-old apoE-deficient mice with 2 months of chronic pressure overload induced by abdominal aortic constriction (AAC) relative to sham-operated apoE-deficient mice and nontransgenic B6 mice, (iii) 10 month-old B6 mice with 6 months of AAC relative to sham-operated B6 mice, and (iv) 5 month-old B6 mice with 1 month of AAC relative to age-matched B6 mice.
Project description:Atherosclerosis and pressure overload are major risk factors for the development of heart failure in patients. Cardiac hypertrophy often precedes the development of heart failure. However, underlying mechanisms are incompletely understood. To investigate pathomechanisms underlying the transition from cardiac hypertrophy to heart failure we used experimental models of atherosclerosis- and pressure overload-induced cardiac hypertrophy and failure, i.e. apolipoprotein E (apoE)-deficient mice, which develop heart failure at an age of 18 months, and non-transgenic C57BL/6J (B6) mice with heart failure triggered by 6 months of pressure overload induced by abdominal aortic constriction (AAC). The development of heart failure was monitored by echocardiography, invasive hemodynamics and histology. The microarray gene expression study of cardiac genes was performed with heart tissue from failing hearts relative to hypertrophic and healthy heart tissue, respectively. The microarray study revealed that the onset of heart failure was accompanied by a strong up-regulation of cardiac lipid metabolism genes involved in fat synthesis, storage and oxidation.
Project description:Expression profiles at various time points after surgical intervention for pressure-overload induced cardiac hypertrophy and failure.