Project description:The aim of this study was to perform a transcriptional characterization of the Arabidopsis eds4 mutant. To this end two separate experiments were performed: Experiment 1: comparison of the transcriptional profile (RNA-seq) of eds4 Arabidopsis mutants in contrast to wild type Col-0 accession grown under continuous light conditions. Experiment 2: Analysis of the distribution of transcripts (RNA-seq) between nucleus and cytoplasm in the eds4 Arabidopsis mutants in comparison to wild type Col-0 plants grown under continuous light conditions.
Project description:Arabidopsis is a host to the fungal powdery mildew pathogen, Erysiphe cichoracearum, and a nonhost to Blumeria graminis f.sp. hordei, the powdery mildew pathogenic on barley. A screen for mutants that allowed increased entry by this inappropriate or nonhost pathogen on Arabidopsis led to the identification of PEN3. While pen3 mutants permitted both increased penetration and increased hyphal growth by B. g. hordei, they were unexpectedly resistant to E. cichoracearum. This resistance was correlated with the appearance of chlorotic patches and was salicylic acid-dependent. Consistent with this observation, microarray analysis revealed that the salicylic acid defense pathway was hyper-induced in pen3 relative to wild type following inoculation with either E. cichoracearum or B. g. hordei. The pen3 phenotypes result from a loss of function of AtPDR8, a ubiquitously and highly expressed ATP binding cassette transporter. PEN3 protein tagged with green fluorescent protein localized to the plasma membrane in uninfected cells. In infected leaves, the protein concentrated to high levels at infection sites and surrounded fungal penetration pegs. We hypothesize that PEN3 may be involved in exporting toxic substrates to sites of infection and that accumulation of these substrates intracellularly in the pen3 mutant may secondarily activate the salicylic acid pathway. Experiment Overall Design: Three week-old wild-type Col and mutant pen3 Arabidopsis thaliana plants were inoculated with Erysiphe cichoracearum, Blumeria graminis hordei, or not inoculated. 1 day post inoculation 16 rosettes were harvested per replicate. 4 replicates were perfomerd per treatment.
Project description:We use metabolite profiles of the model plant Arabidopsis thaliana measured on an UPLC-ESI/QqTOF-MS to evaluate uni- and multivariate statistical analysis of redundant features in compound spectra. Comparison was performed between the wild-type Col-0 and the 90.32 mutant. The mutant is a transposon based activation tagged A. th. line from the TAMARA population Schneider et al. [2005]. This particular mutant has an over-expression of the AT5G55880 - AT5G55890 genetic region with unknown function.
Project description:Arabidopsis is a host to the fungal powdery mildew pathogen, Erysiphe cichoracearum, and a nonhost to Blumeria graminis f.sp. hordei, the powdery mildew pathogenic on barley. A screen for mutants that allowed increased entry by this inappropriate or nonhost pathogen on Arabidopsis led to the identification of PEN3. While pen3 mutants permitted both increased penetration and increased hyphal growth by B. g. hordei, they were unexpectedly resistant to E. cichoracearum. This resistance was correlated with the appearance of chlorotic patches and was salicylic acid-dependent. Consistent with this observation, microarray analysis revealed that the salicylic acid defense pathway was hyper-induced in pen3 relative to wild type following inoculation with either E. cichoracearum or B. g. hordei. The pen3 phenotypes result from a loss of function of AtPDR8, a ubiquitously and highly expressed ATP binding cassette transporter. PEN3 protein tagged with green fluorescent protein localized to the plasma membrane in uninfected cells. In infected leaves, the protein concentrated to high levels at infection sites and surrounded fungal penetration pegs. We hypothesize that PEN3 may be involved in exporting toxic substrates to sites of infection and that accumulation of these substrates intracellularly in the pen3 mutant may secondarily activate the salicylic acid pathway. Keywords: disease state comparison
Project description:The aim of this study was to analyze the impact of autotetraploidy on gene expression in Arabidopsis thaliana by comparing diploid versus tetraploid transcriptomes. In particular, this included the comparison of the transcriptome of different tetraploid A. thaliana ecotypes (Col-0 vs. Ler-0). The study was extended to address further aspects. One was the comparison of the transcriptomes in subsequent generations. This intended to obtain information on the genome wide stability of autotetraploid gene expression. Another line of work compared the transcriptomes of different diploid vs. tetraploid tissues. This aimed to investigate whether particular gene groups are specifically affected during the development of A. thaliana autotetraploids. Samples 1-8: Arabidopsis thaliana Col-0 tetraploid transcriptome. Transcriptional profiling and comparison of diploid vs. tetraploid Col-0 seedlings. The experiment was carried out with pedigree of independently generated and assessed tetraploid Col-0 lines. Samples 9-12: Arabidopsis thaliana Ler-0 tetraploid transcriptome. Transcriptional profiling and comparison of diploid vs. tetraploid Ler-0 seedlings. The experiment was carried out with pedigree of independently generated and assessed tetraploid Ler-0 lines. Samples 13-24: Arabidopsis thaliana Col-0 tetraploid transcriptome. Transcriptional profiling and comparison of diploid vs. tetraploid Col-0 leaves (6th - 8th). The experiment was carried out with pedigree of independently generated and assessed tetraploid Col-0 lines. Samples 25-32: Arabidopsis thaliana Ler-0 tetraploid transcriptome. Transcriptional profiling and comparison of diploid vs. tetraploid Ler-0 leaves (6th - 8th). The experiment was carried out with pedigree of independently generated and assessed tetraploid Ler-0 lines. Samples 33-36: Arabidopsis thaliana Ler-0 tetraploid transcriptome. Transcriptional profiling and comparison of tetraploid vs. tetraploid Ler-0 seedlings from the second (F2) and third (F3) generation after induction, respectively. The experiment was carried out with pedigree of independently generated and assessed tetraploid Ler-0 lines. Samples 37-40: Arabidopsis thaliana Col-0 tetraploid transcriptome. Transcriptional profiling and comparison of tetraploid vs. tetraploid Col-0 seedlings from the second (F2) and third (F3) generation after induction, respectively. The experiment was carried out with pedigree of independently generated and assessed tetraploid Col-0 lines. Samples 41-44: Arabidopsis thaliana Col-0/Ler-0 diploid transcriptome. Transcriptional profiling and comparison of diploid Col-0 vs. diploid Ler-0 seedlings. The experiment was carried out with pedigree of esrablished lines. Samples 45-48: Arabidopsis thaliana Col-0/Ler-0 tetraploid transcriptome. Transcriptional profiling and comparison of tetraploid Col-0 vs tetraploid Ler-0 seedlings. The experiment was carried out with pedigree of independently generated and assessed tetraploid Col-0 and Ler-0 lines.
Project description:This study evaluates the transcriptome of Arabidopsis thaliana seedlings chronically exposed to the hormone Methyl Jasmonate (MeJA) or to the bacterial elicitor flg22 (a 22-amino acid peptide from flagellin). Treatments were performed under high and low phosphate availability using wild-type Col-0 plants and the phr1 phl1 mutant.
Project description:Macrophomina phaseolina (Mp) is a soil-borne pathogenic fungus known to infect more than 500 plants species including important crops. Here we report the use of a novel agar plate-based pathosystem using the model plant Arabidopsis thaliana (Arabidopsis) to study plant defense reponses to Mp, specifically a comparison between wild type Col-0 and double mutant ein2/jar1 roots with and without Mp infection, at two time points, by RNA-seq.
Project description:In order to better understand the transcriptional networks triggered by pathogen inoculation, we monitored gene expression in leaves of mutant Arabidopsis plants, inoculated with Pseudomonas syringae ES4326 and wild type Col-0 plants grown in parallel. Individual leaves were injected in the morning using a needle-less syringe with 10E5 cfu cm-2 PsmES4326 (suspended in 5 mM MgSO4). For the wild type, leaves were also mock treated with 5 mM MgSO4. Leaves were harvested 24 hours later. Plants were grown in pots with BM-2 soil (Berger Peat Moss Ltd, Quebec, Canada) at a density of 9 plants per pot and kept at 22 degrees Celsius with 75% humidity and a 12 hour day length. Keywords: Expression profilling by array