Project description:Camel milk is widely characterized with regard to caseins and whey proteins. However, in camelids, close to nothing is known about the Milk Fat Globule Membrane (MFGM), the membrane surrounding fat globules in milk. The purpose of this study was thus to identify MFGM proteins from Camelus dromedarius milk. Major MFGM proteins (namely, fatty acid synthase, xanthine oxidase, butyrophilin, lactadherin, and adipophilin) already evidenced in cow milk were identified in camel milk using mass spectrometry. In addition, a 1D-LC-MS/MS approach led us to identify 322 functional groups of proteins associated with the camel Milk Fat Globule Membrane. We hope that these findings will contribute to a better characterization of camel milk and to an improved understanding of lipid droplet formation in the mammary epithelial cell.
Project description:Demand for camel milk (CM) is increasing worldwide, due to its high nutritious value and health benefits. In this study, whole CM powders were produced by spray drying (SD) at six inlet temperatures (190°C - 250°C) and by freeze drying (FD). Physicochemical and functional properties of CM powder proteins were investigated. Both treatments had negative effect on casein solubility, while whey proteins remained soluble and slightly increased its solubility with the extent of MR. The CM powders obtained at higher inlet temperatures demonstrated improved antioxidant activity. Secondary structure of whey proteins did not differ among the samples, while surface hydrophobicity of whey proteins was higher in all SD than in FD samples, suggesting only limited denaturation of camel whey proteins at higher inlet temperatures of drying. Thus, the effects of SD under the conditions applied in our study did not decrease camel whey protein solubility, while drying procedure itself regardless of temperature decreased solubility of camel milk caseins. This study provides useful insights for optimization of CM powder production.
2021-02-25 | PXD023290 | Pride
Project description:Bacteria and fungi in bactrian camel milk and naturally fermented camel milk
| PRJNA848402 | ENA
Project description:Effect of camel milk on the gut microbiome of rats
| PRJNA993487 | ENA
Project description:camel milk microbial community diversity
Project description:Opioids such as morphine have many beneficial properties as analgesics, however, opioids may induce multiple adverse gastrointestinal symptoms. We have recently demonstrated that morphine treatment results in significant disruption in gut barrier function leading to increased translocation of gut commensal bacteria. However, it is unclear how opioids modulate the gut homeostasis. By using a mouse model of morphine treatment, we studied effects of morphine treatment on gut microbiome. We characterized phylogenetic profiles of gut microbes, and found a significant shift in the gut microbiome and increase of pathogenic bacteria following morphine treatment when compared to placebo. In the present study, wild type mice (C57BL/6J) were implanted with placebo, morphine pellets subcutaneously. Fecal matter were taken for bacterial 16s rDNA sequencing analysis at day 3 post treatment. A scatter plot based on an unweighted UniFrac distance matrics obtained from the sequences at OTU level with 97% similarity showed a distinct clustering of the community composition between the morphine and placebo treated groups. By using the chao1 index to evaluate alpha diversity (that is diversity within a group) and using unweighted UniFrac distance to evaluate beta diversity (that is diversity between groups, comparing microbial community based on compositional structures), we found that morphine treatment results in a significant decrease in alpha diversity and shift in fecal microbiome at day 3 post treatment compared to placebo treatment. Taxonomical analysis showed that morphine treatment results in a significant increase of potential pathogenic bacteria. Our study shed light on effects of morphine on the gut microbiome, and its role in the gut homeostasis.