Project description:To establish molecular pathways disrupted by loss of RREB1 in Purkinje cells, RNA-seq was performed on mRNA isolated from Purkinje cells and differential expression analysis was performed.
Project description:Protein function is controlled by the cellular proteostasis network. Proteostasis is energetically costly and those costs must be balanced with the energy needs of other physiological functions. Hypertonic stress causes widespread protein damage in C. elegans. Suppression and management of protein damage is essential for optimal survival under hypertonic conditions. ASH chemosensory neurons allow C. elegans to detect and avoid strongly hypertonic environments. We demonstrate that gene mutations that disrupt ASH mediated hypertonic avoidance behavior or genetic ablation of ASH neurons enhance survival during hypertonic stress. Enhanced survival is not due to altered systemic volume homeostasis or organic osmolyte accumulation. Instead, loss of ASH neuron function reduces protein damage in non-neuronal cells. Improved proteostasis capacity is due in part to upregulation of genes that play important roles in managing protein damage. We propose that inhibitory signaling from ASH neurons normally suppresses expression of genes required for non-neuronal cell proteostasis. Because all cells have the capacity to sense and respond to stressors, inhibitory neuronal signaling may be important for minimizing activation of cellular stress resistance and proteostasis pathways during short duration and less extreme stressors or stressors that can be avoided by behavioral changes. Neuronal regulation of systemic proteostasis allows the nervous system to monitor environmental variables and more effectively partition finite energy resources between different organismal processes. Our studies add to a growing body of work demonstrating that intercellular communication between neuronal and non-neuronal cells plays a critical role in integrating cellular stress resistance with other organismal physiological demands and associated energy costs. mRNA expression profiling of synchronized L4 stage wild-type N2 Bristol and VC1262 osm-9(ok1677) C. elegans strains under control (51mM NaCl) and hypertonic stress (200mM NaCl).
Project description:The unfolded protein response (UPR) maintains endoplasmic reticulum (ER) proteostasis through the activation of transcription factors such as XBP1s and ATF6. The functional consequences of these transcription factors for ER proteostasis remain poorly defined. Here, we describe methodology that enables orthogonal, small molecule-mediated activation of the UPR-associated transcription factors XBP1s and/or ATF6 in the same cell independent of stress. We employ transcriptomics and quantitative proteomics to evaluate ER proteostasis network remodeling owing to the XBP1s and/or ATF6 transcriptional programs. Furthermore, we demonstrate that the three ER proteostasis environments accessible by activating XBP1s and/or ATF6 differentially influence the folding, trafficking, and degradation of destabilized ER client proteins without globally affecting the endogenous proteome. Our data reveal how the ER proteostasis network is remodeled by the XBP1s and/or ATF6 transcriptional programs at the molecular level and demonstrate the potential for selectively restoring aberrant ER proteostasis of pathologic, destabilized proteins through arm-selective UPR-activation. The unfolded protein response adapts endoplasmic reticulum (ER) proteostasis via stress-responsive transcription factors including XBP1s and ATF6. Here, R. Luke Wiseman and colleagues implement technology for the orthogonal, ligand-dependent activation of XBP1s and/or ATF6 in a single cell. They characterize how XBP1s and/or ATF6 activation impacts ER proteostasis pathway composition and function. Adapted ER environments influence the proteostasis of destabilized protein variants without affecting the endogenous proteome. The work informs the development of proteostasis environment-adapting therapeutics for protein misfolding-related diseases. In order to activate both XBP1s and ATF6 in the same cell, we incorporated DHFR.ATF6 and tet-inducible XBP1s into a HEK293T-REx cell line stably expressing the tet-repressor. The HEK293DYG control cell line expresses tet-inducible eGFP and DHFR.YFP and is used as a control to demonstrate that the addition of doxycycline (dox) and trimethoprim (TMP) do not induce UPR genes. HEK293DYG cells were treated for 12 h with vehicle or 1 μg/mL dox and 10 μM TMP in biological triplicate. Cells were harvested and RNA was extracted using the RNeasy Mini Kit (Qiagen). Genomic DNA was removed by on-column digestion using the RNase-free DNase Set (Qiagen). Data from HEK293DYG cells showed no significant overlap in the ligand-treated transcriptomes obtained from HEK293DAX cells.
Project description:Buffering of deleterious mutations by molecular chaperones and degradation of aberrant proteins by quality control systems are both major factors that can impact the mutational landscape available to a client protein. The impacts of the proteostasis network on protein evolution are not limited to just endogenous clients, but can also shape the mutational landscapes accessible to rapidly evolving viral proteins. Here, we test the hypothesis that the composition of the host cell’s endoplasmic reticulum (ER) proteostasis network shapes the evolution of RNA viruses by focusing on human immunodeficiency virus-1 envelope (Env), a membrane glycoprotein that folds and matures in the host cell’s secretory pathway. We apply chemical genetic methods to activate the IRE1-XBP1s and/or the ATF6 transcriptional arms of the unfolded protein response in a stress-independent manner. We then quantitatively assess the impact of the resulting altered host cell ER proteostasis environments on the relative enrichment of all Env single amino acid substitutions using deep mutational scanning. We find that upregulation of host ER proteostasis factors globally reduces the mutational tolerance of HIV-1 Env, particularly upon induction of the IRE1-XBP1s transcriptional arm of the UPR. The effects of ATF6 activation are less global, but still significant at particular Env sites. The impact of the XBP1s-induced ER proteostasis environment is disparate for diverse structural elements of Env. Conserved, functionally important regions generally exhibit the largest decreases in mutational tolerance upon XBP1s activation. In contrast, specific regions of Env, including regions targeted by broadly neutralizing antibodies, display greatly enhanced mutational tolerance when XBP1s is activated. Altogether, these data reveal a new set of host factors that specifically shape the mutational space accessible to HIV Env and, more generally, provide compelling evidence that UPR-regulated proteostasis mechanisms play critical roles in membrane protein evolution.