Project description:Somatic cell mutants can be informative in the analysis of a wide variety of cellular processes. The use of map- based positional cloning strategies in somatic cell hybrids to analyze genes responsible for recessive mutant phenotypes is often tedious, however, and remains a major obstacle in somatic cell genetics. To fulfill the need for more efficient gene mapping in somatic cell mutants, we have developed a new DNA microarray comparative genomic hybridization (array-CGH) method that can rapidly and efficiently map the physical location of genes complementing somatic cell mutants to a small candidate genomic region. Here we report experiments that establish the validity and efficacy of the methodology.
Project description:Somatic cell mutants can be informative in the analysis of a wide variety of cellular processes. The use of map- based positional cloning strategies in somatic cell hybrids to analyze genes responsible for recessive mutant phenotypes is often tedious, however, and remains a major obstacle in somatic cell genetics. To fulfill the need for more efficient gene mapping in somatic cell mutants, we have developed a new DNA microarray comparative genomic hybridization (array-CGH) method that can rapidly and efficiently map the physical location of genes complementing somatic cell mutants to a small candidate genomic region. Here we report experiments that establish the validity and efficacy of the methodology. Set of arrays organized by shared biological context, such as organism, tumors types, processes, etc. Keywords: Logical Set
Project description:Somatic cell mutants can be informative in the analysis of a wide variety of cellular processes. The use of map- based positional cloning strategies in somatic cell hybrids to analyze genes responsible for recessive mutant phenotypes is often tedious, however, and remains a major obstacle in somatic cell genetics. To fulfill the need for more efficient gene mapping in somatic cell mutants, we have developed a new DNA microarray comparative genomic hybridization (array-CGH) method that can rapidly and efficiently map the physical location of genes complementing somatic cell mutants to a small candidate genomic region. Here we report experiments that establish the validity and efficacy of the methodology. Set of arrays organized by shared biological context, such as organism, tumors types, processes, etc. Using regression correlation
Project description:Gene expression of Col, Van and reciprocal hybrids using double-stranded cDNA followed by bioprime random labeling, and hybridization to AtTILE1 forward array. Study on gene expression polymorphism between arabidopsis thaliana accessions Col-0 and Van-0. Study on the inheritance of gene expression in reciprocal hybrids. Keywords: cDNA hybridization
Project description:Gene amplifications and deletions frequently contribute to tumorigenesis. Characterization of these DNA copy-number changes is important for both the basic understanding of cancer and its diagnosis. Comparative genomic hybridization (CGH) was developed to survey DNA copy-number variations across a whole genome. With CGH, differentially labelled test and reference genomic DNAs are co-hybridized to normal metaphase chromosomes, and fluorescence ratios along the length of chromosomes provide a cytogenetic representation of DNA copy-number variation. CGH, however, has a limited ( approximately 20 Mb) mapping resolution, and higher-resolution techniques, such as fluorescence in situ hybridization (FISH), are prohibitively labour-intensive on a genomic scale. Array-based CGH, in which fluorescence ratios at arrayed DNA elements provide a locus-by-locus measure of DNA copy-number variation, represents another means of achieving increased mapping resolution. Published array CGH methods have relied on large genomic clone (for example BAC) array targets and have covered only a small fraction of the human genome. cDNAs representing over 30,000 radiation-hybrid (RH)-mapped human genes provide an alternative and readily available genomic resource for mapping DNA copy-number changes. Although cDNA microarrays have been used extensively to characterize variation in human gene expression, human genomic DNA is a far more complex mixture than the mRNA representation of human cells. Therefore, analysis of DNA copy-number variation using cDNA microarrays would require a sensitivity of detection an order of magnitude greater than has been routinely reported. We describe here a cDNA microarray-based CGH method, and its application to DNA copy-number variation analysis in breast cancer cell lines and tumours. This study is described more fully in Pollack JR et al.(1999) Nat Genet 23:41-6 Keywords: other
Project description:We conducted microarray-based comparative genomic hybridization (array-CGH) with a DNA chip carrying 2,464 BAC clones to examine genomic aberrations of 236 neuroblastomas (112 sporadic and 124 mass screening-detected). In paralell, gene-expression profiling was also performed by using in-house cDNA microarrays. Keywords: Comparative genomic hybridization
Project description:Data underlying Sander et al., Oncogene 2005, June 20, Comparative genomic hybridization on mouse cDNA microarrays and its application to a murine lymphoma model. Includes both array CGH and expression data. Abstract: Microarray-based formats offer a high-resolution alternative to conventional, chromosome-based comparative genomic hybridization (CGH) methods for assessing DNA copy number alteration (CNA) genome-wide in human cancer. For murine tumors, array CGH should provide even greater advantage, since murine chromosomes are more difficult to individually discern. We report here the adaptation and evaluation of a cDNA microarray-based CGH method for the routine characterization of CNAs in murine tumors, using mouse cDNA microarrays representing approximately 14,000 different genes, thereby providing an average mapping resolution of 109 kb. As a first application, we have characterized CNAs in a set of 10 primary and recurrent lymphomas derived from a Myc-induced murine lymphoma model. In primary lymphomas and more commonly in Myc-independent relapses, we identified a recurrent genomic DNA loss at chromosome 3G3-3H4, and recurrent amplifications at chromosome 3F2.1-3G3 and chromosome 15E1/E2-15F3, the boundaries of which we defined with high resolution. Further, by profiling gene expression using the same microarray platform, we identified within CNAs the relevant subset of candidate cancer genes displaying comparably altered expression, including Mcl1 (myeloid cell leukemia sequence 1), a highly expressed antiapoptotic gene residing within the chr 3 amplicon peak. CGH on mouse cDNA microarrays therefore represents a reliable method for the high-resolution characterization of CNAs in murine tumors, and a powerful approach for elucidating the molecular events in tumor development and progression in murine models. A disease state experiment design type is where the state of some disease such as infection, pathology, syndrome, etc is studied. Keywords: disease_state_design, arrayCGH, expression profiling
Project description:Gene amplifications and deletions frequently contribute to tumorigenesis. Characterization of these DNA copy-number changes is important for both the basic understanding of cancer and its diagnosis. Comparative genomic hybridization (CGH) was developed to survey DNA copy-number variations across a whole genome. With CGH, differentially labelled test and reference genomic DNAs are co-hybridized to normal metaphase chromosomes, and fluorescence ratios along the length of chromosomes provide a cytogenetic representation of DNA copy-number variation. CGH, however, has a limited ( approximately 20 Mb) mapping resolution, and higher-resolution techniques, such as fluorescence in situ hybridization (FISH), are prohibitively labour-intensive on a genomic scale. Array-based CGH, in which fluorescence ratios at arrayed DNA elements provide a locus-by-locus measure of DNA copy-number variation, represents another means of achieving increased mapping resolution. Published array CGH methods have relied on large genomic clone (for example BAC) array targets and have covered only a small fraction of the human genome. cDNAs representing over 30,000 radiation-hybrid (RH)-mapped human genes provide an alternative and readily available genomic resource for mapping DNA copy-number changes. Although cDNA microarrays have been used extensively to characterize variation in human gene expression, human genomic DNA is a far more complex mixture than the mRNA representation of human cells. Therefore, analysis of DNA copy-number variation using cDNA microarrays would require a sensitivity of detection an order of magnitude greater than has been routinely reported. We describe here a cDNA microarray-based CGH method, and its application to DNA copy-number variation analysis in breast cancer cell lines and tumours. This study is described more fully in Pollack JR et al.(1999) Nat Genet 23:41-6
Project description:Background: A collection of genetic deficiencies covering over 70% of the Caenorhabditis elegans genome exists, however the application of these valuable biological tools has been limited due to the incomplete correlation between their genetic and physical characterization. Results: We have applied oligonucleotide array Comparative Genomic Hybridization (oaCGH) to the high resolution, molecular characterization of several genetic deficiency and duplication strains in a 5Mb region of Chromosome III. We incorporate this data into a physical deficiency map which is subsequently used to direct the positional cloning of essential genes within the region. From this analysis we are able to quickly determine the molecular identity of several previously unidentified mutations. Conclusion: We have applied accurate, high resolution molecular analysis to the characterization of genetic mapping tools in Caenorhabditis elegans. Consequently we have generated a valuable physical mapping resource, which we have demonstrated can aid in the rapid molecular identification of mutations of interest. Keywords: C.elegans Deficiencies CGH