Project description:au07-07_salmonella - infection with Salmonella or Pseudomonas or E. coli. Identification of genes involved in early Arabidopsis response to pathogenic and non-pathogenic bacteria. Arabidopsis thaliana Col-0 seedlings were infected for 2 hours with a) Salmonella typhimurium strain 14028s, b) Pseudomonas syringae DC3000 or c) Escherichia coli DH5A Keywords: treated vs untreated comparison
Project description:The aim of this experiment was to determine if the development of resistance to antibiotics can be driven by the concentration and speciation of Cu. Experimental setup was designed to investigate two hypotheses for which two strains of Gram- bacteria have been selected: - Do TE enhance AR in resistant bacteria? Resistant strain: Bioluminescent Pseudomonas aeruginosa PAO1 (Xen41, Tetracycline resistant) - Do TE induce AR in sensitive bacteria? Sensitive strain: Pseudomonas aeruginosa PAO1 (Wild Type)
Project description:The aim of this experiment was to determine if the development of resistance to antibiotics can be driven by the concentration and speciation of Cu. Experimental setup was designed to investigate two hypotheses for which two strains of Gram- bacteria have been selected: - Do TE enhance AR in resistant bacteria? Resistant strain: Bioluminescent Pseudomonas aeruginosa PAO1 (Xen41, Tetracycline resistant) - Do TE induce AR in sensitive bacteria? Sensitive strain: Pseudomonas aeruginosa PAO1 (Wild Type)
Project description:We have implemented an integrated Systems Biology approach to analyze overall transcriptomic reprogramming and systems level defense responses in the model plant Arabidopsis thaliana during an insect (Brevicoryne brassicae) and a bacterial (Pseudomonas syringae pv. tomato strain DC3000) attack. The main aim of this study was to identify the attacker-specific and general defense response signatures in the model plant Arabidopsis thaliana while attacked by phloem feeding aphids or pathogenic bacteria. Defense responses and networks, unique and specific for aphid or Pseudomonas stresses were identified. Our analysis revealed a probable link between biotic stress and microRNAs in Arabidopsis and thus opened up a new direction to conduct large-scale targeted experiments to explore detailed regulatory links among them. The presented results provide a first comprehensive understanding of Arabidopsis - B. brassicae and Arabidopsis - P. syringae interactions at a systems biology level.
Project description:au07-07_salmonella - infection with Salmonella or Pseudomonas or E. coli. Identification of genes involved in early Arabidopsis response to pathogenic and non-pathogenic bacteria. Arabidopsis thaliana Col-0 seedlings were infected for 2 hours with a) Salmonella typhimurium strain 14028s, b) Pseudomonas syringae DC3000 or c) Escherichia coli DH5A Keywords: treated vs untreated comparison 6 dye-swap - CATMA arrays
Project description:Epithelial cells were in contact either with live bacteria (S. aureus) or with bacterial supernatant during 3 hours. Three dependant experiment for each condition were performed. RNA from epithelial cells were extracted. Each condition was hybridized on 6 slides (3 slides with their corresponding swap) Keywords: parallel sample
Project description:Epithelial cells were in contact either with live bacteria (S. aureus) or with bacterial supernatant during 3 hours. Three dependant experiment for each condition were performed. RNA from epithelial cells were extracted. Each condition was hybridized on 6 slides (3 slides with their corresponding swap)
Project description:Pseudomonas aeruginosa is an ubiquitous gram-negative bacterium that may colonize a wide range of organisms, including bacteria, plants, and animals. It is a human opportunistic pathogen which shows a great threat to immunocompromised patients. P. aeruginosa displays intrinsic resistance to many antibiotics, and has a high ability to develop novel mechanisms of resistance which forms a threat in hospital environments and makes it extremely hard to eradicate. Additionally over half of the genes of this bacteria have no described function, so it is urgent to search for proteins related to its pathogenicity and antibiotic resistance. The aim of this study was to characterise the P. aeruginosa PA2504 protein of unknown function. Basic phenotypic analysis did not indicate the role of PA2504 in the cell, thus, in order to recognize transcripts affected by the lack of PA2504 transcriptomes of the ΔPA2504 and the wild-type PAO1161 strains were compared using high-throughput RNA sequencing (RNA-seq). Using qRT-PCR method we determined that the level of PA2504 transcript is higher in the stationary phase of growth as compared to the exponential phase of bacterial growth (Log2 FC = 2,77) thus the samples for the RNA-seq experiments were withdrawn from this phase of growth.The RNA-seq revealed that the expression of 42 transcripts was changed in the ΔPA2504 mutant as compared to the parental PAO1161 strain and that the majority of them were connected to the sulphur transport/metabolism.