Project description:Investigation of Gene Expression Profiling in Unstaged Head Hair Follicles Plucked from Men and Women Keywords: Gene Expression Profiling of Normal Hair Follicles
Project description:Investigation of Gene Expression Profiling in Unstaged Head Hair Follicles Plucked from Men and Women Experiment Overall Design: Total RNA was extracted from 1-3 unstaged follicles plucked from the scalp of each of 36 adult human volunteers. The average quantifiable yield of RNA per follicle was 112.5 ng. Ten samples were selected, based on ribosomal ratio, relative integrity number and total yield, for expression profiling. By preamplifying the extracted RNA (starting with as little as 30 ng), sufficient labeled RNA was generated to conduct Afymetrix-based gene expression analysis.
Project description:Scarring alopecia consists of a collection of disorders characterized by destruction of hair follicles, replacement with fibrous scar tissue, and irreversible hair loss. Alopecia affects men and women worldwide and can be a significant source of psychological stress and depression for affected individuals. The purpose of this study was to explore metabolic profiles in scalp tissue samples from normal control subjects (n=6) and in matched samples obtained from affected (n=12) and unaffected (n=12) areas of the scalp in patients with lymphocytic Frontal Fibrosing Alopecia (FFA). Frontal fibrosing alopecia results from destruction of hair follicles by an inflammatory lymphocytic infiltrate that is localized around the upper portion of the hair follicle.
Project description:Inner Mongolia Cashmere Goat is a local excellent breed of cashmere and meat dual-purpose, which is a typical heterogeneous indumentum. The hair follicles cycle through periods of vigorous growth (anagen), a regression caused by apoptosis (catagen), and relative rest (telogen). At present, it is not clear which genes affect the cycle transformation of hair follicles and unclear how proteins impact the creation and expansion of hair follicles. In this work, we investigated the possible pathways of transformation and apoptosis in goat hair follicles using multi-omics joint analysis methodologies. The results showed that 917 , 1187 and 716 proteins were specifically expressed in anagen, catagen and telogen. The result of gene ontology (GO) annotation showed that differentially expressed proteins(DEPs) are in different growth cycle periods, and enriched GO items are mostly related to the transformation of cells and proteins. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment result indicated that the apoptosis process has a great impact on hair follicle's growth cycle. The results of the protein interaction network of differential proteins showed that the Ribosomal Protein family ( RPL4, RPL8, RPS16, RPS18, RPS2, RPS27A, RPS3 ) was the core protein in the network. The results of combined transcriptome and proteomics analysis showed that there were 16,34, and 26 overlapped DEGs and DEPs in the comparison of anagen VS catagen, catagen VS telogen and anagen VS telogen, of which API5 plays an important role in regulating protein and gene expression levels. We focused on API5 and Ribosomal protein and found that API5 affected the apoptosis process of hair follicles, and Ribosomal Protein was highly expressed in the resting stage of hair follicles. They are both useful as molecular marker candidate genes to study hair follicle growth and apoptosis, and they both have an essential function in the cycle transition process of hair follicles. The results of this study may provide a theoretical basis for further research on the growth and development of hair follicles in Inner Mongolian Cashmere goats.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.
Project description:Transcriptional profiling of human mesenchymal stem cells comparing normoxic MSCs cells with hypoxic MSCs cells. Hypoxia may inhibit senescence of MSCs during expansion. Goal was to determine the effects of hypoxia on global MSCs gene expression.