Project description:Many trees form ectomycorrhizal symbiosis with fungi. During symbiosis, the tree roots supply sugar to the fungi in exchange for nitrogen, and this process is critical for the nitrogen and carbon cycles in forest ecosystems. However, the extents to which ectomycorrhizal fungi can liberate nitrogen and modify the soil organic matter and the mechanisms by which they do so remain unclear since they have lost many enzymes for litter decomposition that were present in their free-living, saprotrophic ancestors. Using time-series spectroscopy and transcriptomics, we examined the ability of two ectomycorrhizal fungi from two independently evolved ectomycorrhizal lineages to mobilize soil organic nitrogen. Both species oxidized the organic matter and accessed the organic nitrogen. The expression of those events was controlled by the availability of glucose and inorganic nitrogen. Despite those similarities, the decomposition mechanisms, including the type of genes involved as well as the patterns of their expression, differed markedly between the two species. Our results suggest that in agreement with their diverse evolutionary origins, ectomycorrhizal fungi use different decomposition mechanisms to access organic nitrogen entrapped in soil organic matter. The timing and magnitude of the expression of the decomposition activity can be controlled by the below-ground nitrogen quality and the above-ground carbon supply.
Project description:Direct injection mass spectrometry data for publication titled: "Drought reduces release of plant matter into dissolved organic matter potentially restraining ecosystem recovery"
Project description:Two maize hybrid cultivars contrasting in low nitrogen tolerance (low nitrogen-tolerant XY335 and low nitrogen-sensitive HN178) were used in this study . The experiment was carried out at Xinji Experimental Station (43º31′N, 124º48′E) of Hebei Agricultural University. The top 0-20 cm of the soil used contained organic matter 17.79 g·kg-1, total nitrogen 1.21 g·kg-1, alkali hydrolyzed nitrogen 64.9 mg.kg-1, available phosphorus 23.8 mg·kg-1, and available potassium 120.6 mg·kg-1. The experiment adopted a split plot design, with varieties as the main plot and nitrogen fertilizer as the sub-plot. There were 2 varieties for testing: XY335 and HN138. Two levels of nitrogen supply: N0 (0 kg N ha-1) and N240 (240 kg N ha-1), replicated three times. Each plot had 6 rows, with the row length measuring 20 m, and the row spacing of 60 cm, giving the plot area of 72 m2. The planting density was 67,500 plants ha-1. Nitrogen fertilizer used was urea (46% N), and 50% was applied before sowing and at the flared stage, respectively. During the grain filling stage, leaf tissues of three biological replicates were collected from control and treatment conditions, and immediately frozen in liquid nitrogen for subsequent proteomics analysis.
Project description:Measure changes in dissolved organic matter composition and resulting microbial decomposition rates in an experimentally warmed peatland.
Project description:Coastal marine sediments, as locations of substantial fixed nitrogen loss, are very important to the nitrogen budget and to the primary productivity of the oceans. Coastal sediment systems are also highly dynamic and subject to periodic natural and anthropogenic organic substrate additions. The response to organic matter by the microbial community involved in nitrogen loss processes was evaluated using mesocosms of Chesapeake Bay sediments. Over the course of a 50-day incubation, rates of anammox and denitrification were measured weekly using 15N tracer incubations, and samples were collected for genetic analysis. Rates of both nitrogen loss processes and gene abundances associated with them corresponded loosely, probably because heterogeneities in sediments obscured a clear relationship. The rates of denitrification were stimulated more by the higher organic matter addition, and the fraction of nitrogen loss attributed to anammox slightly reduced. Furthermore, the large organic matter pulse drove a significant and rapid shift in the denitrifier community as determined using a nirS microarray, indicating the diversity of these organisms plays an essential role in responding to anthropogenic inputs. We also suggest that the proportion of nitrogen loss due to anammox in these coastal estuarine sediments may be underestimated due to temporal dynamics as well as from methodological artifacts related to conventional sediment slurry incubation approaches.
Project description:Linkages between decomposition of terrigenous dissolved organic matter (DOM) and microbial community structure: influences of chemical DOM characteristics.
Project description:Polyamines, such as putrescine and spermidine, are aliphatic organic compounds with multiple amino groups. They are found ubiquitously in marine systems. However, compared with the extensive studies on the concentration and fate of other dissolved organic nitrogen compounds in seawater, such as dissolved free amino acids (DFAA), investigations of bacterially-mediated polyamine transformations have been rare. Bioinformatic analysis identified genes encoding polyamine transporters in 74 of 109 marine bacterial genomes surveyed, a surprising frequency for a class of organic nitrogen compounds not generally recognized as an important source of carbon and nitrogen for marine bacterioplankton. The genome sequence of marine model bacterium Silicibacter pomeroyi DSS-3 contains a number of genes putatively involved in polyamine use, including six four-gene ATP-binding cassette transport systems. In the present study, polyamine uptake and metabolism by S. pomeroyi was examined to confirm the role of putative polyamine-related genes, and to investigate how well current gene annotations reflect function. A comparative whole-genome microarray approach (Bürgmann et al., 2007) allowed us to identify key genes for transport and metabolism of spermidine in this bacterium, and specify candidate genes for in situ monitoring of polyamine transformations in marine bacterioplankton communities.
Project description:Direct injection mass spectrometry data for publication titled: "Drought reduces release of plant matter into dissolved organic matter potentially restraining ecosystem recovery"
Project description:Phytoplankton are known to release organic compounds that fuel secondary production by heterotrophic bacteria. Here we show that an abundant marine cyanobacterium, Synechococcus elongatus, contributes a variety of nitrogen-rich and sulfur-containing compounds to dissolved organic matter. A combination of targeted and untargeted metabolomics and genomic tools was used to characterize the intracellular and extracellular metabolites of S. elongatus. Aromatic compounds such as 4-hydroxybenzoic acid and phenylalanine, as well as nucleosides (e.g., thymidine, 5’-methylthioadenosine, xanthosine), the organosulfur compound 3-mercaptopropionate, and the plant auxin indole 3-acetic acid, were detected in the extracellular metabolites at multiple time points during the growth of S. elongatus. Further, the amino acid kynurenine was found to accumulate in the media even though it was not included in the predicted metabolome of S. elongatus. This suggests that not all metabolites produced by an organism can be predicted from its genome sequence. Some metabolites may be products of non-enzymatic reactions and are likely excreted into the environment as waste. The compounds described herein provide excellent targets for quantitative analysis in field settings to assess the source and lability of dissolved organic matter in situ.
2015-01-26 | MTBLS155 | MetaboLights
Project description:Heterotroph response to phytoplankton dissolved organic matter